

Software Product Lines in Action

Frank J. van der Linden · Klaus Schmid
Eelco Rommes

Software Product Lines
in Action
The Best Industrial Practice
in Product Line Engineering

With 90 Figures and 9 Tables

ABC

Frank J. van der Linden
Philips Medical Systems
Veenpluis 4-6
5684 PC Best, The Netherlands
frank.van.der.linden@philips.com

Klaus Schmid
Universität Hildesheim
Institut für Informatik
Samelsonplatz 1
31141 Hildesheim, Germany
schmid@sse.uni-hildesheim.de

Eelco Rommes
Philips Research
Prof. Holstlaan 4
5656 AA Eindhoven, The Netherlands
eelco.rommes@xs4all.nl

Library of Congress Control Number: 2007923180

ACM Computing Classification (2007): D.2, K.6.3, H.4

ISBN 978-3-540-71436-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors
Production: Integra Software Services Pvt. Ltd., Puducherry, India
Cover design: KünkelLopka, Heidelberg

Printed on acid-free paper 45/3100/Integra 5 4 3 2 1 0

Foreword

Software product lines represent perhaps the most exciting paradigm shift in
software development since the advent of high-level programming languages.
Nowhere else in software engineering have we seen such breathtaking improve-
ments in cost, quality, time to market, and developer productivity, often regis-
tering in the order-of-magnitude range. Let me say that again: often registering
in the order-of-magnitude range. Just to be clear, we are talking about soft-
ware systems built for around one-tenth the cost. With around one-tenth the
faults. Delivered in around one-tenth the time. If you know of another way to
achieve such a staggering combination of better-faster-and-cheaper, please let
me know.

Equally exciting to me are the strategic benefits that accrue to a product
line organization, in the form of market agility. At the Software Engineering
Institute, we have recorded case study after case study of companies succeed-
ing in one market area with a product line approach, and then taking their
production capability to a nearby, under-exploited area of the market, and
quickly rising to market dominance in that area as well. And why not? If you
can outperform your competitors by order-of-magnitude levels, it’s hard to
imagine what could keep you from becoming a market leader.

It seems very clear that software product line practice, as a viable and
attractive option for software development, is without doubt here to stay.
While the underlying concepts are straightforward enough – building a family
of related products or systems by planned and careful reuse of a base of
generalized software development assets – the devil can be in the details.
Successful product line practice can involve organizational change, business
process change, and technology change. Bringing comprehensive change to a
software development organization isn’t easy, and false starts are expensive –
or fatal. Better to learn from the experts than strike out through the wilderness
on your own.

Which brings us to this book: I fully expect that Software Product Lines
in Action will become one of the foundational references of this quickly evolv-
ing field. It’s the most comprehensive treatment of product line practice in

VI Foreword

existence today. It’s all here, the concepts, a full approach, a holistic treatment
of product line practice from the standpoint of business, process, and technol-
ogy, an analysis method, and a rich collection of case studies. In fact, a big
reason to be a fan of this book is its wonderful collection of case studies. Noth-
ing teaches like experience, and the unprecedented ten case studies represent
(to my knowledge) the largest collection of experiential software product line
reports ever gathered in one reference. More than just third-hand reporting,
however, the authors themselves have been integral leaders on many of the
case studies on which they report. They have been important contributors to
this field almost since it was a field, and can rightly take credit for helping to
make software product line practice a known, repeatable, software develop-
ment approach. In fact, they helped make this field a field. I’m proud to call
them colleagues. After you read this book and launch a successful software
product line of your own, you’ll be proud to call them colleagues too.

Austin, Texas,
January 2007 Paul Clements

Preface

The software industry is challenged with a continuous drive to improve its en-
gineering practice. Software has to be produced ever faster and more reliable.
Increasingly, complex systems are produced with constant, or even diminish-
ing, numbers of people.

Software product line engineering is a strategic approach to developing
software. It impacts business, organisation and technology alike and is a
proven way to develop a large range of software products and software-
intensive systems fast and at low costs, while at the same time delivering
high-quality software.

This book captures the wealth of knowledge that eight companies have
gathered during the introduction of the software product line engineering
approach in their daily practice.

Who This Book Is For

This book is meant for anyone who is interested in the practical side of product
line engineering. Those who consider to use a product line approach in their
organisations, those who are about to start one and those who want to im-
prove their current practices will find useful information. This book presents
a broad view on product line engineering so that both managers and technical
specialists will benefit from reading it. Specific emphasis is given to providing
real-world data to support managers in deciding on the potential adoption of
product line engineering in their organisations. We believe that best practices
are best communicated along with what goes wrong if one fails to adhere to
them. This book is also a tool on how to do it right (or wrong), and to learn
from the experiences of others.

Background knowledge of product line engineering is not required, but the
reader is expected to be familiar with current software engineering practices,
or to have some experience in software development.

VIII Preface

Readers who want a detailed introduction to the subject are referred to
the textbook Software Product Line Engineering [106], which describes the
foundations, principles and techniques of software product line engineering.

What You Will Learn from Reading This Book

This book gives a practical overview to software product line engineering,
driven from industrial experiences that were collected from organisations of
varying sizes and domains. Practitioners themselves report on practical im-
plementation: from practitioners to practitioners.

This book is complemented with business-related information regarding
the benefits and drawbacks of the approach. It not only shows how software
product lines can improve the software creation process, but also describes
problems that may occur and how companies have solved them in their re-
spective contexts.

The core of this book contains ten case studies, covering small and large
organisations, acting in all kinds of domains, with different degrees of domain
and process maturity. These companies work on a large variety of software
intensive systems including medical imaging, mobile phones, software for tele-
visions, utility control, supervision and management, financial services and
car electronics.

The reader will

• understand the relevant aspects, regarding business, architecture, process
and organisational issues, of applying software product line engineering.

• learn about the current practice of product line engineering in leading
companies of different sizes, operating in several countries and working in
various domains.

• have the information for performing an informed analysis on the appli-
cability, or improvement, of the product line approach to his or her own
organisation.

• have information about the first steps in transitioning, or improving, the
product line approach in his or her organisation.

The Case Studies

Starting in the 1990s, massive investments were made in Europe in the area
of product line engineering. This was done both inside companies and as a
part of large projects in which companies, research institutes and academia
from many different countries co-operated, for example the ESAPS, CAFÉ
and FAMILIES projects. One of the results was a flourishing community of
product line engineering research and practice in Europe.

Preface IX

The case studies in this book reflect the experiences of companies that
were involved in these projects. Each case study was written with experts
from the case in question.

The majority of these studies deals with software intensive systems, mainly
because the software intensive systems industry in general is more advanced
when it comes to software product line engineering. There are several reasons
for that.

• Experience with platforms and customisation in other engineering disci-
plines is often already present in these companies.

• Their customers are used to choosing from a range of systems, each with
different properties.

• Pure software customers are often acquainted to and mostly accept the
one-size-fits-all system, where they can adapt the system to their specific
needs.

However, as more and more information systems — especially business-
oriented systems — must be adapted to business-oriented workflows, product
line engineering becomes increasingly important. Also for these systems, the
adaptation and customisation costs for the client may become prohibitive if
systems are delivered with too much diverse and undocumented variability.

The Structure of This Book

This book consist of three parts: a high-level introduction to software product
line engineering, ten industrial case studies and their analysis.

Part I — Aspects of Software Product Line Engineering

This part sets a common framework for the description of our industrial case
studies. It covers the four major concerns of software product line engineering:
Business, Architecture, Process and Organisation. These BAPO concerns are
a main organising principle of this part. Each of them is explained in detail
in a separate chapter. In addition, the Family Evaluation Framework is based
on these concerns.

Chapter 1 Product Line Engineering Approach provides the basics
you need to understand the book. It explains what product line engineering
is, provides an overview of the major aspects (BAPO) and introduces the
main topics of software product line engineering: variability and the use of a
platform.

Chapter 2 Business explains the business aspects of software product
line engineering. It deals with the motivation to initiate or continue with
this approach and it explains the economical aspects of software product line
engineering.

X Preface

Chapter 3 Architecture deals with the technical aspects of product
lines, most importantly how to deal with variability.

Chapter 4 Process describes the processes for software product line
engineering. It describes the separation between domain and application en-
gineering, and the relation between these two life-cycles.

Chapter 5 Organisation deals with roles and responsibilities, structures
and distribution of the work.

Chapter 6 The Family Evaluation Framework introduces a BAPO-
based framework that can be used to evaluate software product line engineer-
ing in larger or smaller parts of companies.

Part II — Experience Reports

This part is the body of the book. It consists of eight experience reports from
ten different companies of various sizes and working on various domains.

Chapter 7 Experiences in Product Line Engineering describes the
origins of the experiences, the part of software product line engineering that is
covered and the formats used within each experiment. The following chapters
each describe the company’s (or division’s) experiences.

Chapter 8 AKVAsmart shows a small company introducing a product-
line approach for its range of fish-farming products.

Chapter 9 Bosch Gasoline Systems describes how a product line or-
ganisation was set up and executed for a large supplier of automotive products.

Chapter 10 DNV Software deals with the introduction of a product
line in ship classification software.

Chapter 11 market maker Software AG shows the business impact
of the introduction of a product line on a small company producing financial
software.

Chapter 12 Nokia Mobile Phones gives information on the way a
product line improves the way to deal with quality requirements, in a large
telecom product company.

Chapter 13 Nokia Networks shows another part of this big company,
describing the impact of the complex organisation to the product line devel-
opment.

Chapter 14 Philips Consumer Electronics Software for Televi-
sions shows how all BAPO concerns are affected by the introduction of a
product line within this large company

Chapter 15 Philips Medical Systems describes another part of this
large company, and how they took a different approach in the introduction of
product lines.

Chapter 16 Siemens Medical Solutions shows the difficulties a big
company may have to introduce only partially a product line.

Preface XI

Chapter 17 Telvent gives details of the application of an architecture
pattern for product lines in the network management domain.

Part III — Conclusions

In this part, conclusions are drawn from an analysis of the set of experiences
described. It summarises the lessons learned and provides general guidelines
on how to get started with software product line engineering.

Chapter 18 Analysis reflects on the experiences and looks at them from
a BAPO and FEF perspective.

Chapter 19 Starting with Software Product Line Engineering
presents the steps that need to be taken to successfully make the transition
towards software product line engineering, using examples from Part II.

Chapter 20 Outlook looks at trends and expectations for the future. It
also describes the challenges that still need to be solved.

Acknowledgements

We thank Eureka/ITEA, BMBF (Germany), SenterNovem (Netherlands) and
all other public authorities for funding the projects ESAPS (1999–2001),
CAFÉ (2001–2003) and FAMILIES (2003–2005). This book is based on the
experience obtained in these projects. However, a lot of additional work was
done by a lot of people from the various organisations in order to achieve a
quality of the case studies that we can now present here. This goes well be-
yond project-based work. Each of them is named for the respective case stud-
ies, as they were strongly involved and contributed to writing the final case
studies.

The BAPO model of product line engineering concerns was a result of
the Composable Architectures project conducted at Philips Research between
1998 and 2002. The authors thank their organisations for giving them time to
finish the book. These are Philips Medical Systems, Philips Research, Fraun-
hofer IESE and the University of Hildesheim.

Timo Käkölä provided valuable comments on an earlier version of the
book. Monika Lamping did a great job at proof-reading and performing cor-
rections on it and Dennis Stender provided assistance with some pictures.
Several figures, viz. 1.1, 1.2, 1.4, 1.5, 2.3, 4.1, 4.2 and 5.1 are copies from the
book Software Product Line Engineering [106].

And finally, we would like to thank Ralf Gerstner for accompanying this
project for such a long time.

Contents

Part I Aspects of Software Product Line Engineering

1 The Product Line Engineering Approach 3
1.1 Motivation . 3
1.2 A Brief History of Software Product Line Engineering 5
1.3 Fundamentals of the Software Product Line Engineering

Approach . 6
1.4 Variability Management . 8

1.4.1 Types of Variability . 8
1.4.2 Variability Representation . 9
1.4.3 Application Engineering and Variability 11

1.5 Business-Centric . 12
1.6 Architecture-Centric . 14
1.7 Two-Life-Cycle Approach . 14
1.8 The BAPO Model . 16
1.9 Summary . 19

2 Business . 21
2.1 Motivation . 21
2.2 Product Line Markets . 22

2.2.1 Product Definition Strategy . 22
2.2.2 Market Strategies . 23
2.2.3 The Product Line Life-Cycle . 24
2.2.4 The Relation of Strategy and Product Line Engineering 26

2.3 Product Line Economics . 27
2.3.1 Economic Results of Product Line Engineering 27
2.3.2 A Simple Model of Product Line Economics 28
2.3.3 Advanced Aspects of Product Line Economics 29

2.4 Product Management and Scoping . 31
2.4.1 Product Portfolio Management . 31
2.4.2 Domain Potential Analysis . 33
2.4.3 Asset Scoping . 34

2.5 Summary . 35

XIV Contents

3 Architecture . 37
3.1 Motivation . 37
3.2 Architecture Concerns . 38

3.2.1 Architecturally Significant Requirements 38
3.2.2 Conceptual Architecture . 39
3.2.3 Structure . 39
3.2.4 Texture . 39

3.3 Product Line Architecting . 40
3.3.1 Basic Variability Techniques . 40
3.3.2 Concrete Variation Mechanisms . 41

3.4 Evaluation . 42
3.5 Evolution . 43

3.5.1 End of Life . 44
3.6 Summary . 44

4 Process . 47
4.1 Motivation . 47
4.2 The Software Product Line Engineering Framework 48
4.3 Domain Engineering . 49

4.3.1 Product Management . 49
4.3.2 Domain Requirements Engineering 49
4.3.3 Domain Design . 51
4.3.4 Domain Realisation . 51
4.3.5 Domain Testing . 52

4.4 Application Engineering . 53
4.4.1 Application Requirements Engineering 53
4.4.2 Application Design . 54
4.4.3 Application Realisation . 54
4.4.4 Application Testing . 54

4.5 Process Maturity: CMMI . 55
4.5.1 Maturity Levels . 55
4.5.2 Structure of CMMI Models . 56

4.6 Summary . 57

5 Organisation . 59
5.1 Motivation . 59
5.2 Roles and Responsibilities . 61

5.2.1 Product Manager . 61
5.2.2 Domain Requirements Engineer . 62
5.2.3 Domain Architect . 63
5.2.4 Domain Developer . 63
5.2.5 Domain Tester . 64
5.2.6 Domain Asset Manager . 64
5.2.7 Application Requirements Engineer 64
5.2.8 Application Architect . 65

Contents XV

5.2.9 Application Developer . 65
5.2.10 Application Tester . 65

5.3 Organisational Structures . 66
5.3.1 Product-Oriented Organisation . 67
5.3.2 Process-Oriented Organisation . 69
5.3.3 Matrix Organisation . 70
5.3.4 Testing . 70
5.3.5 Asset Management . 72
5.3.6 Product Management . 74

5.4 Geographical Distribution . 76
5.5 Collaboration Schemes . 77
5.6 Summary . 78

6 The Family Evaluation Framework . 79
6.1 Motivation . 79
6.2 Structure . 80
6.3 Business Dimension . 82

6.3.1 Level 1: Project-Based . 82
6.3.2 Level 2: Aware . 83
6.3.3 Level 3: Managed . 84
6.3.4 Level 4: Measured . 85
6.3.5 Level 5: Optimised . 85

6.4 Architecture Dimension . 85
6.4.1 Level 1: Independent Development 87
6.4.2 Level 2: Standardised Infrastructure 87
6.4.3 Level 3: Software Platform . 87
6.4.4 Level 4: Variant Products . 88
6.4.5 Level 5: Configuring . 88

6.5 Process Dimension . 88
6.5.1 Level 1: Initial . 90
6.5.2 Level 2: Managed . 90
6.5.3 Level 3: Defined . 91
6.5.4 Level 4: Quantitatively Managed . 93
6.5.5 Level 5: Optimising . 93

6.6 Organisation Dimension . 93
6.6.1 Level 1: Project . 95
6.6.2 Level 2: Reuse . 95
6.6.3 Level 3: Weakly Connected . 95
6.6.4 Level 4: Synchronised . 96
6.6.5 Level 5: Domain-Oriented . 96

6.7 Applying the FEF . 97
6.7.1 Complex Organisations . 97
6.7.2 Example . 100

6.8 Connection to Other Approaches . 104
6.9 Summary . 105

XVI Contents

Part II Experience Reports

7 Experiences in Product Line Engineering 111
7.1 Experimental Software Engineering . 112
7.2 Experience Reports on Product Line Development 114
7.3 Case Study Basics . 115

7.3.1 Setting Up Case Studies . 115
7.3.2 The Case Study Format . 116

7.4 Overview of the Case Studies . 118

8 AKVAsmart . 121
8.1 Introduction . 122
8.2 Motivation . 122

8.2.1 Case Description . 122
8.2.2 Market Drivers . 125

8.3 Approach . 125
8.4 Architecture . 126

8.4.1 The Framework . 127
8.4.2 Examples of Plug-ins . 128

8.5 Results and Impact Evaluation . 129
8.6 Lessons Learned . 131
8.7 Outlook . 131

9 Bosch Gasoline Systems . 133
9.1 Introduction . 134
9.2 Motivation . 134
9.3 Approach . 136

9.3.1 Business Strategy . 136
9.3.2 Work Products: Software Architecture 137
9.3.3 Software Components . 140
9.3.4 Processes and Methods . 141
9.3.5 Tool Environment . 143
9.3.6 Organisation . 144

9.4 Lessons Learned . 144
9.4.1 Management Role . 144
9.4.2 Product and Process Excellence – Product Line

Engineering and CMMI . 146
9.5 Summary . 147

10 DNV Software . 149
10.1 Introduction . 150
10.2 Motivation . 151
10.3 Approach . 152

10.3.1 First Generation Product Line Engineering 152
10.3.2 Second Generation Product Line Engineering 155

Contents XVII

10.4 Results and Impact Evaluation . 162
10.5 Lessons Learned . 164
10.6 Outlook . 165

11 market maker Software AG . 167
11.1 Introduction . 168
11.2 Motivation . 168
11.3 Adoption Process . 172

11.3.1 Fast Time to Market . 172
11.3.2 New Team. 172
11.3.3 Early Focus on Applications . 172
11.3.4 No Separation of Domain

and Application Engineering Teams 173
11.3.5 Encapsulation of Legacy Systems . 173
11.3.6 Simple Architectural Style . 173
11.3.7 Effective Communication . 174
11.3.8 Immediate and Reliable Decisions 174
11.3.9 Coaching . 174
11.3.10 Small Investments . 174

11.4 Current Process . 175
11.4.1 Business . 175
11.4.2 Architecture . 175
11.4.3 Process . 180
11.4.4 Organisation . 184

11.5 Results and Impact Evaluation . 186
11.6 Lessons Learned . 187
11.7 Summary . 189

12 Nokia Mobile Phones . 191
12.1 Introduction . 192
12.2 Motivation . 192
12.3 Approach . 193

12.3.1 Typing and Quality Characteristics 195
12.3.2 Traceability . 195
12.3.3 The ART Environment . 197

12.4 Example: Security . 199
12.5 Lessons Learned . 204
12.6 Outlook . 205

13 Nokia Networks . 207
13.1 Introduction . 208
13.2 Motivation . 208
13.3 Approach . 211

XVIII Contents

13.4 Lessons Learned . 214
13.5 Outlook . 216

14 Philips Consumer Electronics Software for Televisions 219
14.1 Introduction . 220
14.2 Motivation . 220
14.3 Approach . 223
14.4 Business Aspects . 224
14.5 Architecture . 224
14.6 Process . 227
14.7 Organisation . 229
14.8 Results . 229
14.9 Lessons Learned . 230

15 Philips Medical Systems . 233
15.1 Introduction . 234
15.2 Motivation . 234
15.3 Approach . 235

15.3.1 Adoption Approach . 235
15.3.2 Current Development Approach . 239

15.4 Results and Impact Evaluation . 245
15.5 Lessons Learned . 246
15.6 Outlook . 247

16 Siemens Medical Solutions . 249
16.1 Introduction . 250
16.2 Motivation . 251
16.3 Approach . 251

16.3.1 Adoption Process . 251
16.3.2 Current Process . 252

16.4 Results and Impact Evaluation . 261
16.5 Lessons Learned . 262
16.6 Summary . 263

17 Telvent . 265
17.1 Introduction . 266
17.2 Motivation . 266
17.3 Approach . 268

17.3.1 Organisation and Business . 269
17.3.2 Using the Abstract Factory Pattern 269
17.3.3 Introducing the Dynamic Abstract Factory Pattern 270
17.3.4 Reusing the Dynamic Abstract Factory Pattern 272

17.4 Lessons Learned . 274

Contents XIX

Part III Conclusions

18 Analysis . 277
18.1 Motivation . 277

18.1.1 Complexity . 277
18.1.2 Variability and Commonality . 278
18.1.3 Efficiency and Costs . 279
18.1.4 Reuse and Architecture . 279
18.1.5 Quality . 279

18.2 Business . 280
18.2.1 FEF Evaluations . 281

18.3 Architecture . 281
18.3.1 FEF Evaluations . 282

18.4 Process . 283
18.4.1 Evaluations . 283

18.5 Organisation . 284
18.5.1 FEF Evaluations . 284

18.6 Summary . 285
18.6.1 How to Do It . 285
18.6.2 Guidelines . 286
18.6.3 Benefits . 287
18.6.4 Concerns . 287
18.6.5 Evaluations . 288

19 Starting with Software Product Line Engineering 289
19.1 Decide . 290

19.1.1 Define Business Strategy and Vision 290
19.1.2 Learn About Software Product Line Engineering 291
19.1.3 Perform a Risk Analysis . 291

19.2 Prepare . 294
19.2.1 Gain Support . 294
19.2.2 Set Concrete Goals . 295
19.2.3 Scope the Product Line . 296
19.2.4 Evaluate the Organisation . 298
19.2.5 Plan the Transition . 299

19.3 Transition . 300
19.3.1 Roll Out and Institutionalise . 300
19.3.2 Evolving the Product Line . 302

19.4 Conclusion . 303

XX Contents

20 Outlook . 305
20.1 Where We Are . 305
20.2 Current Shortcomings of Product Line Engineering 306

20.2.1 Methodological Shortcomings . 307
20.2.2 Technology and Tools . 309

20.3 Going Beyond Product Lines . 310
20.4 Product Line Engineering for Practitioners 311

Glossary . 313

References . 317

About the Authors . 327

Index . 329

Part I

Aspects of Software Product Line Engineering

1

The Product Line Engineering Approach

Software increasingly becomes the key asset for modern, competitive prod-
ucts. No matter how simple or complex, no matter how large or small, there
is hardly any modern product without software. Thus, competitiveness in soft-
ware development has increasingly become a concern for companies of all sizes
and in all markets. As a result, product line engineering has gained increasing
attention over recent years. While many introductions of a software product
line engineering approach are driven by cost and time to market concerns, it
supports other business goals as well. We will discuss the consequences of such
an approach on business performance in detail in Sect. 1.1. In Sect. 1.2 we will
discuss the historical basis of software product line engineering and compare
it with other efforts for software reuse. Section 1.3 gives an overview of the
most fundamental concepts of product line engineering. These are variability
management, business-centric development, architecture-centric development,
and the two-life-cycle approach. We will discuss each of these concepts below
in detail in a separate section.

1.1 Motivation

Many different reasons lead companies to embark on a software product line
engineering approach. These range from more process-oriented aspects like
cost and time over product qualities like reliability to end-user aspects like
user interface consistency.

The move towards software product line engineering is usually strongly
based on economic considerations. Due to its support of large-scale reuse,
such an approach improves mostly the process side of software development,
i.e. it reduces costs, time to market and improves qualities of the resulting
products like their reliability.

The improvement of costs and time to market are strongly correlated in
software product line engineering: the approach supports large-scale reuse dur-
ing software development. As opposed to traditional reuse approaches [108],

4 1 The Product Line Engineering Approach

Accumulated
effort

Number of
different systems

Single systems
Product line

Break-even
point

Up-front
investment

Lower costs
per system

Approx. 3 systems

Fig. 1.1. Economics of software product line engineering

this can be as much as 90% of the overall software. Reuse is more cost-effective
than development by orders of magnitude. Thus, both development costs and
time to market can be dramatically reduced by product line engineering.

Unfortunately, this improvement does not come for free, but requires some
extra up-front investment. This is required for building reusable assets, trans-
forming the organisation, etc. Different strategies exist to make this invest-
ment. They range from the so-called big-bang approach to an incremental
strategy [131], but the underlying need for a set-up investment remains. The
positive message is, however, that usually a break-even is reached after about
three products, sometimes earlier (cf. Fig. 1.1).

Usually, along with the reduction of development costs a reduction of main-
tenance costs is also achieved. Several aspects contribute to this reduction;
most notably the fact that the overall amount of code and documentation
that must be maintained is dramatically reduced. As the overall size of the ap-
plication development projects is strongly reduced, the accompanying project
risk is reduced as well.1

Software product line engineering also has a strong impact on the qual-
ity of the resulting software. A new application consists, to a large extent,
of matured and proven components. This implies that the defect density of
such products can be expected to be drastically lower than products that are

1 Note that this holds only for individual system development. The overall setup
of the product line is actually larger than a single system development and, as a
consequence, it is usually more risky. This is often compensated by an incremental
build-up strategy for the product line [131]

1.2 A Brief History of Software Product Line Engineering 5

developed all anew. This leads to more reliable and secure systems. As a result,
safety is positively impacted as well. Software product line engineering can
also support quality assurance, e.g. by regarding a product and its simulation
as two variants. Especially for embedded systems, simulation enables exten-
sive testing that would be impossible otherwise. If both variants are derived
from the same code, simulations can actually be used as a basis for analysing
the quality of the final product. While arguments of costs typically dominate
the product line engineering debate, the ability to produce higher quality is for
some organisations the major argument, especially in safety-critical domains,
where major efforts go in the quality assurance and certification efforts.

Beyond process qualities, software product line engineering positively im-
pacts product aspects like the usability of the final product, e.g. by improving
the consistency of the user interface. This is achieved by using the same build-
ing blocks for implementing the same kind of user interaction, e.g. by having
a single component for installation or user registration for a whole set of prod-
ucts instead of having a specific one for each product. In some cases, demand
for this kind of unification has been the basis for the introduction of a product
line engineering approach in the first case [20].

1.2 A Brief History of Software Product Line
Engineering

The dream of massive software reuse is about as old as software engineering
itself. Numerous attempts or initiatives to reuse software were made, but
usually with little success. These reuse initiatives were usually based on an
approach focusing on small-scale, ad hoc reuse (i.e. typically on the code-
level – or at least within a development phase; in addition the development of
new assets was rarely based on the systematic analysis of future variability).

The concept of focusing on a specific domain as a basis for developing
reusable assets was only introduced somewhat later [97]. However, work in
this context focused almost exclusively on the fully automatic development of
software in a single domain based on generation tools. This lead to domain-
specific languages, but so far never scaled to large-scale system development.2

Back in the 1970s Parnas [101] already proposed the concept of product
families. While it was initially aimed at variability in non-functional charac-
teristics, the product line concept can be traced back to this work.

The concept of product lines was fully introduced in the early 1990s. One
of the first contributions was the description of the Feature-Oriented Do-
main Analysis (FODA) method [80]. Around the same time several compa-
nies started to address the issue more systematically. For example, Philips
introduced the Building-Block method in the early 1990s [146]. These first

2 Current developments in domain-specific languages are revisited in Chap. 20,
p. 309

6 1 The Product Line Engineering Approach

approaches were leveraged by massive investments in Europe in the area of
software product line engineering, both inside companies and part of several
scientific projects. The following are among them:

• ARES (1995–1998) – Architectural Reasoning for Embedded Systems.
• Praise (1998–2000) – Product-line Realisation and Assessment in Indus-

trial Settings.
• ESAPS (1999–2001) – Engineering Software Architectures, Processes and

Platforms [49].
• CAFÉ (2001–2003) – from Concepts to Application in system-Family En-

gineering [35].
• FAMILIES (2003–2005) – FAct-based Maturity through Institutionalisa-

tion, Lessons-learned and Involved Exploration of System-family
engineering [51].

These projects supported the systematic building of a community of soft-
ware product line engineering research and practice in Europe. During the
same time, especially, the SEI (Software Engineering Institute) supported the
development of software product line engineering in the USA, most notably
in the context of governmental organisations.

1.3 Fundamentals of the Software Product Line
Engineering Approach

The key difference between traditional single system development and software
product line engineering is a fundamental shift of focus: from the individual
system and project to the product line. This shift especially implies a shift in
strategy: from the ad hoc next-contract vision to a strategic view of a field of
business.

Software product line engineering relies on a fundamental distinction of
development for reuse and development with reuse as shown in Fig. 1.2. In
domain engineering (development for reuse) a basis is provided for the ac-
tual development of the individual products. As opposed to many traditional
reuse approaches that focus on code assets, the product line infrastructure
encompasses all assets that are relevant throughout the software development
life-cycle. The various assets cover the whole range from the requirements
stage over architecture and implementation to testing. This range of assets
together defines the product line infrastructure. A key distinction of software
product line engineering from other reuse approaches is that the various assets
themselves contain explicit variability. For example, a representation of the
requirements may contain an explicit description of specific requirements that
apply only for a certain subset of the products.

The individual assets in the product line infrastructure are linked together
just like assets in software development. For example, traceability is defined

1.3 Fundamentals of the Software Product Line Engineering Approach 7

D
o

m
ai

n
E

n
g

in
ee

ri
ng

A
p

p
lic

at
io

n
E

n
g

in
ee

ri
n

g

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Domain
Design

Application
Requirements
Engineering

Application
Realisation

Application
Testing

Application 1 - Artefacts

Architecture Components TestsRequirements

System-Family Artefacts

Product
Management

Application N - Artefacts

Application
Design

Requirements Architecture Components Tests

Fig. 1.2. The two-life-cycle model of software product line engineering

among the individual assets, ideally enabling one to take a requirement and
identify all related implementation code and test cases.

Application engineering (development with reuse) builds the final products
on top of the product line infrastructure. Application engineering is strongly
driven by the product line infrastructure, which usually contains most of the
functionality required for a new product. The variability explicitly modelled
in it provides the basis for deriving the individual products. Basically, when a
new product is developed, an accompanying project is set up. Then require-
ments are gathered and directly categorised as being part of the product line
(i.e. a commonality or variability) or product-specific. Then the various assets
(e.g. architecture, implementation, etc.) may be instantiated right away, lead-
ing to an initial product version. At this stage in the development, up to 90%
of the product may be available from reuse; only the remaining 10% must be
developed in further steps.

Several principles are fundamental to successful software product line en-
gineering. They can be described as follows:

• Variability management : individual systems are considered as variations
of a common theme. This variability is made explicit and must be system-
atically managed.

8 1 The Product Line Engineering Approach

• Business-centric: software product line engineering aims at thoroughly
connecting the engineering of the product line with the long-term strategy
of the business.

• Architecture-centric: the technical side of the software must be developed
in a way that allows taking advantage of similarities among the individual
systems.

• Two-life-cycle approach: the individual systems are developed based on a
software platform. These products – as well as the platform – must be
engineered and have their individual life-cycles.

In the following sections, we will discuss each of these principles in detail.

1.4 Variability Management

Software product line engineering aims at supporting a range of products.
These products may support different, individual customers or may address
entirely different market segments. As a result, variability is a key concept
in any such approach. Instead of understanding each individual system all
by itself, software product line engineering looks at the product line as a
whole and the variation among the individual systems. This variability must
be defined, represented, exploited, implemented, evolved, etc. – in one word
managed – throughout software product line engineering. This is what we
mean, when we discuss variability management.

1.4.1 Types of Variability

When managing variability in a product line, we need to distinguish three
main types:

1. Commonality: a characteristic (functionality or non-functional) can be
common to all products in the product line. We call this a commonality.
This is then implemented as part of the platform.

2. Variability: a characteristic may be common to some products, but not to
all. It must then be explicitly modelled as a possible variability and must
be implemented in a way that allows having it in selected products only.

3. Product-specific: a characteristic may be part of only one product – at least
for the foreseeable future. Such specialties are often not required by the
market per se, but are due to the concerns of individual customers. While
these variabilities will not be integrated into the platform, the platform
must be able to support them.

During the life-cycle of the product line, a specific variability may change in
type. For example, a product-specific characteristic may become a variability.
On the other hand, a commonality may become a variability as well – for
example, if over time the decision is made to support alternatives to the

1.4 Variability Management 9

VariationsVariations

CommonalitiesCommonalities

Domain Engineering

VariationsVariations

CommonalitiesCommonalities

Application Engineering

Product -SpecificProduct-specific
P

la
tfo

rm

Fig. 1.3. The relation of different types of variability

characteristic (e.g. extending the platform beyond the initial operating system
which provided the starting basis).

While commonalities and variabilities are handled mostly in domain en-
gineering, product-specific parts are handled exclusively in application engi-
neering. This is shown in Fig. 1.3.

Variability management is a concern in any software product line engineer-
ing approach. It covers the whole life-cycle. It starts with the early steps of
scoping, covering all the way to implementation and testing and finally going
into evolution. As such, variability is relevant to all assets throughout software
development. It is thus a very generic question: How to represent variability?

1.4.2 Variability Representation

Many different approaches to variability representation have been discussed
over the years. They differ in several dimensions. The following are among
them:

• Which concepts are used to characterise variability?
• Is variability representation integrated with the final assets?

For representing variability several different approaches have been devised.
While most modern approaches use features as basic concepts for variability
representation, other approaches exist as well. For example, some approaches
make the underlying decision that differentiates among various products the
basic concept of variability representation. Also, various different interpreta-
tions of the term feature exist. This opens a very wide spectrum. The major
point is that characteristics of the products that differentiate them from other
products are core to the representation. Most modern approaches support the
characterisation of variability by means of characteristics that cut across dif-
ferent views. This brings us to the second dimension. This dimension describes

10 1 The Product Line Engineering Approach

whether the variability information is fully integrated in other models or not.
While initially variability modelling was often integrated in the underlying
notation, meanwhile it is generally recognised that approaches to variability
modelling that rely on the distinction of a variability model and a main sys-
tem model are much easier to apply in complex settings and scale much better
[10]. The notion of distinguishing between variability model and basic system
model is also called orthogonal variability modelling [106]. There are differ-
ent approaches to describe the variability model: the decision-based modelling
approach relies on describing those decisions that must be made in order to
derive a specific product line instance. It was initially described in [135], more
recent approaches include [96, 128].

Alternatively, the variability can be described based on a graphical nota-
tion. For the sake of simplicity, we will use the same graphical notation here
that was used in [106], which goes back to [10]. The notational elements of
these variability diagrams are described in Fig. 1.4.

These elements have the following meaning:

• Variation point : the variation point describes where differences exist in the
final systems (e.g. systems may differ with respect to the operating systems
they rely on, with respect to whether they support e-mail or not, etc.).

optional

alternative

mandatory

[name]
[name]

V

Variability dependencies Constraint dependencies

Variation Point Variant

requires_v -vp
requires_v -vp

requires_v -v

requires_vp -vp

requires_v -v

requires_vp -vp

excludes_v -vp
excludes_v -vp

excludes_v -v

excludes_vp -vp

excludes_v -v

excludes_vp -vp

VP

Fig. 1.4. Graphical notation for variability models

1.4 Variability Management 11

Class Diagram Variability DiagramVariability Diagram

Camera
Surveillance

V

Motion
Detection

V

VP

Home
Security by

Surveillance
Device

Cullet
Detector

Motion
Detector

Camera

Infrared

Camera
B/W

Camera
Color

Camera

Alarm
Device

Detection
Range

Surveillance
Object

Control
Area

0..n
1

1..m
1..n

0..n

1..n

1

0..1

Fig. 1.5. Relation between variability model and class model

• Variant : the different possibilities that exist to satisfy a variation point
are called variants.

• Variability dependencies : this is used as a basis to denote the different
choices (variants) that are possible to fill a variation point. The notation
includes a cardinality which determines how many variants can be selected
simultaneously (e.g. a program may support e-mail, fax, phone, etc. as
communication modes even in a single system).

• Constraint dependencies : they describe dependencies among certain vari-
ant selections. There are two forms:
1. Requires : the selection of a specific variant may require the selection of

another variant (perhaps for a different variation point).
2. Excludes : the selection of a specific variant may prohibit the selection

of another variant (perhaps for a different variation point).

The variability model on its own is not able to represent the full meaning
of variability in software product line engineering. In addition, we need the
traditional views on requirements, design, etc. and the relation between these
views and the variability, so that we know how variability will have an impact
on these individual views. An example of this relationship is given for the case
of a UML class model in Fig. 1.5.

1.4.3 Application Engineering and Variability

Setting up the product line infrastructure is not a goal in itself. The ultimate
aim is its exploitation during application engineering. This is also called the
instantiation of the variability.

As new requirements are captured during application engineering, each
requirement must be considered and a decision must be made about its future

12 1 The Product Line Engineering Approach

treatment in the life-cycle: shall it be part of the platform and shall it be a
variable part there – or shall it be delegated to product development?

The simplest case is when the product line infrastructure already supports
the requirement. In this case, it only needs to be checked that the binding
time of the infrastructure also supports the requirements. The binding time
describes when the decision upon selection of a variant must be made. Typical
values are compile-time, link time, start-up time, etc.

If the requirement is not supported by the product line infrastructure,
there are three different possibilities:

1. One can try to negotiate to drop or replace it. While this may sound
strange from a customer-satisfaction perspective, it needs to be evaluated
nevertheless. In a product line context, the more variabilities we must
support, the more difficult the evolution of the infrastructure gets.

2. The new requirement shall be integrated with the product line infras-
tructure. There exist systematic approaches to make such a decision: the
so-called scoping approaches [119] (see Sects. 1.5 and 2.4).

3. The new requirement shall be integrated in an application-specific manner.

The second case leads to a hand-over with domain engineering, while the
third case leads to stand-alone software development in application engineer-
ing. Typically, all three cases occur for different requirements in the same
system development.

1.5 Business-Centric

While traditional software development focuses on the individual system,
product line engineering must always address the market as a whole. Product
line engineering can only be successful if the product line infrastructure is in
the long term an adequate instrument to field new products onto the market
very efficiently. As a consequence, development decisions for the individual
product are always linked to the product line at large. This relationship must
be managed from an economic point of view.

Because of this strong linkage, it is of key importance that the major
business goals for the product line initiative are well understood. Typical
business goals are effort- (and thus cost-) reduction, as well as time-to-market
reduction. Another major set of goals are quality-related. Typical examples
are reliability improvement or usability improvement. The goal of usability
improvement is supported as product line engineering inherently supports
user interface consistency.

The specific set of goals that provides the basis of a product line engi-
neering effort influences decisions about when a requirement should be im-
plemented and whether it should be implemented for the product line as a
whole or only for a specific product. As a rule of thumb, the break-even from

1.5 Business-Centric 13

a cost-point of view is typically about three implementations.3 When three
or more product realisations of a requirement are required, it is usually more
cost-effective to implement it once as part of domain engineering. This break-
even point shifts as soon as additional goals come in like consistency of user
interfaces – in this case a single product-specific implementation may already
violate this goal.

A business-centric approach to product line engineering entails that key
decisions about which functionality to include in the product line and how
this support shall be realised (as part of domain or application engineering) is
based on a systematic economic decision. This analysis is also called scoping.
We can differentiate three major categories [119]:

1. Product portfolio planning: this aims at determining the specific prod-
ucts and their functionalities that shall be supported by the product line
infrastructure.

2. Domain potential analysis : this aims at analysing the potential of the
product line domain or specific sub-domains in order to identify whether
a promising case for product line engineering exists.

3. Asset scoping: this determines which specific components shall be built in
domain engineering and which requirements they shall support.

Product portfolio planning aims at capturing the products that shall be
part of the product line and identifying their main requirements. At this stage,
a first overview of commonalities and variabilities of the products is gained.
Product portfolio planning is the first step at which an optimisation can (and
should) occur. This activity is mostly performed from a marketing point of
view [82], but in the context of product line engineering, technical aspects
must be taken into account as they strongly impact the production cost [23].

Domain potential analysis focuses on the systematic analysis of an area of
functionality in order to determine whether an investment in software product
line engineering shall be made. This is sometimes done on the level of the
product line as a whole [12], while other approaches focus on individual areas
within the product line [122]. The key issue of this step is always to get a
systematic answer to the question where reuse investments should be focused.
The overall result of this activity corresponds basically to an assessment.

Finally, asset scoping aims at defining the individual components that shall
be built for reuse. In order to adequately define these components, two view-
points must be brought together. These are the viewpoints of business and of
architecture. Thus, this activity can be considered as being on the borderline
between business-centric and architecture-centric. The business-centric view-
point can be addressed by an economic analysis [122], while the architectural
viewpoint is usually taken into account by an architectural review.
3 More detailed analysis [123] shows that the break-even point strongly depends on

the specific situation. It may range from just above 1 to almost a factor of 10. The
underlying driver to this variation is mostly the overhead complexity incurred by
the developed genericity

14 1 The Product Line Engineering Approach

These decisions must be made not only during initial set-up of the product
line (where they are the most pronounced), but also during product line evo-
lution. Thus, usually some kind of review board is set up in the organisation
which is responsible for the decisions described above throughout the lifetime
of the product line.

We will further discuss the business aspects of software product line engi-
neering in Chap. 2.

1.6 Architecture-Centric

Software product line engineering relies on a common product line architecture
(also called reference architecture). It is thus often termed architecture-centric.
The central role of a common architecture is a major ingredient of the success
of product line engineering compared to other reuse approaches. The reference
architecture is designed in domain engineering, in order to provide a coherent
picture of the different components that must be developed and to equip them
with generic interfaces that can be used throughout the different products. A
common architecture defines a single environment for all components that are
used in the individual products4. This ensures that there is no need to develop
multiple components that address similar functionality, and differ only with
respect to the environment they work in.

In each application engineering cycle, the reference architecture provides
the basis for the derivation of the specific product architecture. As discussed
in Sect. 1.4, this product architecture is mainly derived by instantiation of
the generic asset. The architectural decomposition provides the basis for work
assignment in the development process and for determining how to modify
assets to support product-specific requirements. The role of architectures in
a product line context is further discussed in Chap. 3.

Most practitioners to date assume a strong role of product line architecture
as key for the overall success of a product line engineering initiative. Indeed,
most experience reports in software product line engineering report on a strong
role of the architecture [38, 25]. There are but few exceptional cases, where it
seems that successful product line programs have been set up without major
investments in software architecture [34].

1.7 Two-Life-Cycle Approach

Software product line engineering consists of domain engineering and appli-
cation engineering. These two types of engineering are – in the ideal case –
only loosely coupled and synchronised by platform releases. As a consequence,
they can be conducted based on completely different life-cycle models. This

4 In terms of the framework for comprehensive reuse, see [15]

1.7 Two-Life-Cycle Approach 15

distinction of domain engineering and application engineering is a key char-
acteristic of software product line engineering (cf. Fig. 1.2, p. 7).

Domain engineering focuses on the development of reusable assets that
provide the necessary range of variability. As domain engineering continues as
long as the product line exists, the underlying software development approach
must be able to cope with long-term, highly complex system development.

The activities within domain engineering are as follows:

• Product management : this activity aims to define the products that will
constitute the product line as a whole. In particular, it aims at identify-
ing the major commonalities and variabilities among the products. This
realises product portfolio planning as discussed in Sect. 1.5. It also encom-
passes major economic analysis of the products in the product line. The
major output of this activity is the product roadmap.

• Domain requirements engineering : this activity starts with the product
roadmap and aims at a comprehensive analysis of the requirements for the
various products in the product line. It captures these requirements, iden-
tifies commonalities and variabilities and constructs an initial variability
model, which supports the further development steps.

• Domain design: starting from the requirements model, this activity aims
at developing the product line architecture (or reference architecture). It
thus provides the basis for all future realisation work within the product
line.

• Domain realisation: this activity encompasses detailed design and imple-
mentation of the reusable software components. At this stage the planned
variability which has been expressed as a requirement must be realised
with adequate implementation mechanisms.

• Domain testing: this aims at validating the generic, reusable components
that were implemented as a result of the previous activity. Domain testing
is much more difficult than testing in a single system context, mainly
for two reasons: the implemented variability must be taken into account
and there is no specific product which provides an integration context. In
addition, domain testing also generates reusable test assets that can be
reused in application testing.

As a result domain engineering sets up the common product line infras-
tructure, including all required variability.

Application engineering focuses on the development of the individual sys-
tems on top of the platform. As a large part of development effort and com-
plexity is moved to domain engineering, this activity – and thus the underlying
life-cycle model – will usually be profoundly different as it will not need to
cope with so much complexity and the development will not span so much
time. On the other hand, application engineering is directly involved with the
customer and thus will often need to deal with much more rapid changes. As
a consequence, a life-cycle model that is able to cope rapidly with changes is
required.

16 1 The Product Line Engineering Approach

Application engineering consists of the following activities:

• Application Requirements Engineering: This aims at identifying the spe-
cific requirements for an individual product. As opposed to single system
requirements engineering, this starts from the existing commonalities and
variabilities. It is thus the goal of this activity to stay as close as possible
to the existing product line infrastructure.

• Application Design: This activity derives an instance of the reference ar-
chitecture, which conforms to the requirements identified in the previous
step. On top of this product-specific adaptations are built. Thus, as far
as reusable components are concerned, the architecture is consistent with
the reference architecture, enabling plug-and-play reuse.

• Application Realisation: Based on the available requirements and architec-
ture, the final implementation of the product is developed. This includes
reuse and configuration of existing components as well as building new
components corresponding to product-specific functionality.

• Application Testing: In this step, the final product is validated against
the application requirements. Similar to the previous steps, this builds on
reusable assets from the corresponding domain activity.

While the details of the integration of domain engineering and application
engineering will strongly depend on the situation, it is important to keep the
two apart in terms of different types of activities that are typically performed
with different quality criteria and objectives in mind. This is in particular
true, if both life-cycles are enacted by the same people, as is often the case,
especially in small organisations.

1.8 The BAPO Model

In the description of software product line engineering in this book, we use
the BAPO model as a major structuring model. This model is based on the
assumption that in the context of software engineering, four concerns need to
be addressed: Business, Architecture, Process and Organisation (BAPO). This
model has been successfully used in the context of product line engineering
[3, 99, 154], Chap. 14.

• Business : the costs and profits of the software, the strategy of applying it
and the planning of producing it.

• Architecture: the technical means to build the software.
• Process : the roles, responsibilities and relationships within software devel-

opment.
• Organisation: the people and organisational structures that execute the

software development.

As Fig. 1.6 shows, the four BAPO concerns are all interrelated. Applying
changes in one concern induces changes in the others.

1.8 The BAPO Model 17

B
Business

O
Organisation

A
Architecture

P
Process

Fig. 1.6. BAPO concerns of software engineering

The BAPO acronym denotes a natural order to traverse these concerns.
Business is the most influential factor. This has to be set up right in the
first place. Architecture reflects these business concerns in software structure
and rules. Processes enable the development of the software, based on the
architecture. Organisation hosts this process, assigning units and people who
are responsible for business, architecture and process responsibilities.

Throughout this book, we will use the BAPO model as a major structuring
principle. The next four chapters will each address a specific aspect of BAPO.
Moreover, the relation to BAPO will become explicit in each case-study chap-
ter handled in Part II. We will now briefly discuss each of these concerns in a
software product line context.

First, consider business concerns. We emphasised the importance of busi-
ness aspects in a software product line engineering context in Sect. 1.5. Case
studies have shown that the following business advantages can be obtained
from product line engineering:

• Reduction to less than 50% time to market (Chap. 15).
• Reduction of code size by more than 70% (Chap. 8).
• Significantly reduced cost of quality (Chap. 11).
• Product defect density reduced to 50% of original rate (Chap. 15).
• Reduction of calibration and maintenance efforts (up to 20%) (Chap. 9).
• Reduction of resource consumption (20–30%) (Chap. 9).
• Common look-and-feel (Chap. 15).

While these business advantages can be quantified, some others are very
hard to quantify but nevertheless substantial:

18 1 The Product Line Engineering Approach

• A feature can be developed for a single product and, when it is satisfactory,
it can quickly be added to other systems in the product line. This is called
feature propagation.

• Products that are derived from the same product line will exhibit a com-
mon look and feel. This eases the use of the systems by the clients, since the
products act like other systems in the product line that they are familiar
with. This considerably increases customer satisfaction.

• The quality of systems in a product line can be better guaranteed. Reuse
implies many users, which leads to more environments in which the soft-
ware is tested, and more reported and fixed bugs. For instance, this book
shows that the product defect density can be reduced to 50% or less of
what it was before (cf. Chap. 15).

Next consider architecture concerns. We emphasised some architectural as-
pects already in Sect. 1.6. Software product line engineering makes use of a
reference architecture for all products. It needs continuous updates and main-
tenance, since in practice the platform is growing and improving through-
out its lifetime. Variability is traced from requirements over architecture
and design to testing, enabling reuse not only for the software assets, but
also for those of requirements and test. Software product line engineering
enables reuse of test cases by more than 50%. This reduces the test effort
significantly.

The domain architects use the commonality and variability in requirements
and their priorities to determine the commonality and variability of the refer-
ence architecture. Specific variability mechanisms have to be selected to enable
resolving variability easily. It has to provide solutions for requirements inter-
action, including requirements that are in conflict with each other, and that
are applicable to distinct systems. An important concern of the domain archi-
tects is to deal with qualities like flexibility, adaptability, maintainability and
evolvability, that all need to be supported to keep the reference architecture
stable.

The application architects specialise the reference architecture to the spe-
cific requirements of the application. This involves the selection and instanti-
ation of reusable domain assets. For those requirements that are not covered,
application-specific variants have to be determined, and placed in the config-
uration. Such application-specific variants may be candidates for promotion
to the platform, and therefore a close co-operation between domain and ap-
plication architects is important.

Next consider process concerns. We already discussed (Sect. 1.7) that a
product line engineering approach relies on a two-life-cycle model, consisting
of domain engineering and application engineering. Besides these fundamen-
tal development processes, additional co-ordination processes are necessary
to effectively communicate between them. Software product line engineering
usually takes place in organisations at CMMI level 2 or higher [139]. However,
the domain engineering process often reaches level 3 fast.

1.9 Summary 19

Finally consider organisation concerns. The impact of software product
line engineering on the organisation is often underestimated. While the two-
life-cycle model does not necessarily imply a specific organisational structure,
a similar grouping of personnel is often performed. In particular, we often see a
single domain engineering group and several separate application engineering
groups. This – as well as the larger organisational entities that are formed –
typically leads to a diversification of jobs.

Domain engineerings develop high-quality software components, and main-
tain them afterwards to improve the quality even more. In large organisations,
the reference architecture is maintained by a group of people, each of them
is responsible for a specific aspect of the architecture, often a quality issue,
like performance or safety. Of course, knowledge of variability mechanisms is
crucial for domain engineers.

Application engineers are able to build applications fast, based on a given
platform. They need to know how to use the variability mechanisms to con-
figure systems.

Finally, collaboration specialists are needed with good communication
skills that relate between aspects of domain and application engineering. In
many cases, cross-functional teams are active. These are groups of specialists
both in domain and application engineering groups. Together they decide on
the introduction of the evolution of specific aspects that they are responsi-
ble for.

1.9 Summary

Software product line engineering enables major improvements in the software
development process, in particular with respect to development costs and time
to market. In terms of a software reuse program, it achieves levels of reuse
that are so far unprecedented.

Software product line engineering is based on four major concepts:

1. Variability management : if there is a single core concept of product line
engineering, this is it. Determining, modelling and implementing com-
monalities and variabilities lie at the heart of product line engineering.
Throughout this book, we will focus on a modelling approach that relies
on a variability model.

2. Business-centric: product line engineering is business-centric insofar as it
needs to be well aligned with the strategies relevant to the underlying
market. As individual components are built in order to go into the vari-
ous products also in the long-term, it is important to keep product line
engineering well aligned with the business strategy.

3. Architecture-centric: the reference architecture plays a key role in product
line engineering. It is generally believed that the extremely high reuse

20 1 The Product Line Engineering Approach

levels can only be achieved by means of a common architecture for the
various products.

4. Two-life-cycle approach: product line engineering is subdivided into do-
main engineering and application engineering. These address development
for reuse and development with reuse, respectively.

The impact of product line engineering on a company can be particularly
well described by means of the four dimensions of the BAPO-model. This
model will also be the basis for the next four chapters.

2

Business

Product line engineering has a tremendous impact on the business perfor-
mance of companies. This holds both in the context of products the company
is already producing and for new markets that it is about to enter. Success-
ful alignment of product line engineering and business strategy can lead to a
very strong market presence. In this chapter, we focus on the economics of
product line engineering and how this impacts strategy definition and product
management. The relevance of business aspects in product line engineering is
explained in Sect. 2.1. Next, product line markets are examined, followed by a
section on product line economics. Section 2.4 deals with product management
and scope in a product line context. The chapter ends with a summary.

2.1 Motivation

While many software engineering techniques are introduced in order to im-
prove with respect to business concerns like cost or quality, their impact in
the other direction – from software engineering technique to business – is usu-
ally rather small. Not so for product line engineering. It aims at providing a
platform for a whole set of products and is thus typically relevant for a whole
market. As a consequence, the developed product platform determines the
capability of the company to perform business in the market. Thus, strong
links exist to the way an organisation does business and its overall market
strategy.

Business concerns influence the answers to a large range of questions in
product line engineering. The following are among these questions:

• Should product line engineering be started at all?
• How will product line engineering impact our business performance?
• Which products shall we develop as part of a product line?
• What shall be the characteristics or features of these products?
• What timing shall be chosen for the market entry of the individual

products?

22 2 Business

• How shall the products be produced?
– Which functionality shall be developed as part of the product line,

based on the platform?
– What functionality shall be developed as individual functionality?

• How shall we introduce product line engineering in our organisation?
• How shall we evolve the product line over time?

The answers to these questions depend on the underlying product line
goals and markets and require a model of product line economics. We will
now discuss different types of product line markets and then we provide a
product line economics model. Finally, we discuss specific decision-making
procedures on this basis.

2.2 Product Line Markets

In order to explain the relationship between product line engineering and
business, we must first discuss characteristics of markets that are relevant to
product lines. We do so along four major dimensions:

1. Product definition strategy
2. Market strategy
3. Product line life-cycle
4. The relation of product line strategy and product line engineering

2.2.1 Product Definition Strategy

The product definition strategy describes how new products are defined. There
are two main classes that can be distinguished: customer-driven and producer-
driven. In a customer-driven situation, the specific products are mainly de-
fined by demands from existing and future customers. The final products are
individualised to the specific needs of the customer. We call this situation
mass-customisation when there is a very large number of different customer-
demands. In this situation, the specific requirements of individual products
are very difficult to identify up-front. It is very important that the product line
platform provides a flexible basis for further development of products. The op-
posite situation is called producer-driven. In this situation, it is mainly upon
the producing organisation to define the products. This is usually the case
when products are developed for mass-markets; where each product variant
is sold to a large number of customers (often in the hundreds of thousands).

The producer-driven strategy can be further subdivided into market-
oriented and technology-oriented strategies. In the market-oriented strategy
the products that are used to form the product portfolio are determined based
on an analysis of the potential market segments. New products are defined

2.2 Product Line Markets 23

mainly to satisfy newly formed market segments or changing needs in estab-
lished market segments. A technology-oriented strategy starts from techno-
logical capabilities that are developed by the company and brings them to the
market.

The product definition strategy is one major input to determining the
product portfolio, which defines the set of product types that are offered by
a company.

In practice, product definition strategies are usually a mixture of the types
explained above. For example, a company may realise that a specific market is
best addressed by pushing additional technology, but because it is not avail-
able in-house, it first acquires a company that has this technology. Other
examples of a mixed strategy are used by platform vendors. They provide a
base for the development of end systems for broad market segments. The final
customisation is done by partner companies. In specific situations, e.g. if new
markets must be addressed, they may also support the end-customer directly.
Finally, at certain intervals, the company becomes technology-driven in order
to introduce a new platform technology into the market. The impact of such
aspects is also discussed in [67].

While some markets lend themselves more easily to certain strategies, the
specific product definition strategy is also a strategic decision of the company
and is strongly related to other strategic decisions. Product line engineering
can support all of these approaches, but its relative benefit varies in relation
to the strategy (cf. Sect. 2.2.4).

2.2.2 Market Strategies

While the product definition strategy defines who has the major influence
in defining the product portfolio, the market strategy determines how an
organisation wants to be known on the market. A typical categorisation of
market strategies is given by Porter [107], who differentiates three main types
of strategy:

• Cost leadership: the company aims at providing the product at the lowest
possible costs.

• Differentiation: the product sets itself apart from the competitors through
a specific feature (e.g. service, brand name, etc.).

• Focusing: the company focuses on a specific niche.

According to Kotler [82], the differentiation strategy can be further sub-
divided into

• Improving: The company improves in certain aspects (from the point of
view of the customer) over the offerings of its competitors. This may
include cost improvement, quality improvement, accompanying services,
breadth of possible products, etc.

24 2 Business

• Newer : the ideas made available by the producer are new to the market.
This implies that the company is strong on innovations, i.e. that it has
good innovation strategies.

• Faster : new possibilities are made available to the customers quickly. As
opposed to the previous strategy, this does not necessarily mean the com-
pany is the inventor of these concepts.

On a typical market, companies following each of these strategies exist
and can reap their benefits from these strategies. It is a key decision for an
organisation to determine the strategy it uses to address a specific market.
Product line engineering can be combined with each of these strategies to a
varying degree. A company may even use several strategies simultaneously in
addressing a market and support this with product line engineering, as we
discuss in Sect. 2.2.4.

2.2.3 The Product Line Life-Cycle

Individual product have a life-cycle on the market that is typically charac-
terised by the following stages [106]:

• Introduction: a new product is launched. Initially sales are low as the
product is unknown.

• Growth: the product – and its competitive qualities – becomes increasingly
known on the market. As a consequence, sales increase and the profit turns
positive.

• Maturity: the sales increase diminishes. Prices must be reduced to win
market share.

• Saturation: the maximum sales are achieved. At this stage, hard competi-
tion is not unusual.

• Degeneration: the product is increasingly substituted by other products,
perhaps from the same company. Profits strongly decrease.

This single-product life-cycle gives a view on an individual product. In a
product line context, we need to take the combination of products into ac-
count. So, what is the relationship among the individual products in the prod-
uct line? Here, we need to distinguish two perspectives: time and variation1:

• Different products from the same product line can be on the market at the
same time fighting for market share. This leads to the so-called product line
cannibalisation [90], i.e. they mutually reduce each other’s market shares.

• Different products from the same product line supplant each other over
time on the market.

Depending on the mixture of these two product line perspectives, the over-
all product line life-cycle can exhibit different forms of dynamism as shown
1 These two perspectives are sometimes also called variation in time and variation

in space [25]

2.2 Product Line Markets 25

Fig. 2.1. Different possible product line life-cycles in terms of variety and change
(based on [117])

in Fig. 2.1. These forms of dynamism can be categorised along two dimen-
sions: product variety and serial change. The first dimension describes how
many different products are available on the market at the same time. The
second dimension describes how fast a new product is supplanted by a newer
one. Along these two dimensions four categories can be identified: commodity,
variety-intensive, change-intensive and dynamic.

The product line engineering approach can provide benefits to a develop-
ment organisation.2 When analysing a specific market in order to determine
which kind of lifecycle is most appropriate, one needs to take into account that

2 Except in the case of development organisations that focus on commodities. In
this case, a product line is absent by definition

26 2 Business

the characteristics of the market itself may change over time. For example, in
a rather young market, the required variety is usually much lower than in a
mature market.

2.2.4 The Relation of Strategy and Product Line Engineering

Most of the strategies that are used to capture a market can be supported
by product line engineering, albeit by varying degrees. When analysing the
relationship of the product line market strategy and product line engineering,
we first need to appreciate that the two are different in the first place. In the
past, companies realised all these marketing strategies with various develop-
ment approaches, ranging from ad hoc reuse to single-system development.
But product line engineering and a product line market strategy can start a
fruitful symbiosis.

Product line engineering can support a product line marketing strategy.
Product line engineering is able to strongly reduce the amount of effort – and
thus cost – and the time to market required for a new product that fits within
the product line. Mostly, these two factors enable product line engineering
to support the strategies outlined above. The quality benefits of product line
engineering usually play a secondary role.

Product line engineering is well suited for companies that choose a cost
leadership strategy, as it enables them to produce their products at much
lower costs (at least, if they produce more than two or three). The costs for
an additional product are much lower3 than with traditional development ap-
proaches. Thus, product line engineering also enables companies to use an
approach of stronger differentiation as more products on the market can be
cost-effective than with traditional development, despite product line canni-
balisation. Due to the strongly shortened time to market in product line en-
gineering, a stronger differentiation in the category “faster” is possible. Even
for a company searching a focusing advantage, product line engineering en-
ables it to produce its products cost-effectively, where traditional development
approaches would fail.

Product line engineering and the market strategy must fit. Product line en-
gineering aims at establishing a product line platform. This focus on a specific
platform needs to be well aligned with the market strategy, as its existence
makes it more difficult to develop products that do not fit the product plat-
form well. As a consequence, it is of key importance for an organisation to
strongly connect its market strategy and product line engineering. This is also
known as scoping and, in a product line engineering context, this is the focus
of product management. We will discuss this further in Sect. 2.4.

3 The exact improvement with respect to cost reduction cannot be easily quantified.
The reason is that the cost advantage of the product does not only depend on the
production costs, but other costs like marketing, customer support, etc. dilute
the development and maintenance costs advantages of product line engineering

2.3 Product Line Economics 27

2.3 Product Line Economics

In order to further clarify the relationship between product line engineering
and business aspects, we now discuss in detail the economic aspects of product
line engineering. We start with the key impacts of product line engineering
on product and process qualities [121] and the impact this has on possible
business strategies. In Sect. 2.3.1, we present a simple model of product line
economics that also takes into account the issues of setting up a product line
initiative. As the full range of issues that come up in product line economics
would be beyond the scope of this book, we will only briefly illustrate some
of them in Sect. 2.3.2.

2.3.1 Economic Results of Product Line Engineering

Any product that can be developed using a product line engineering approach
can in principle also be developed without one. Although product line engi-
neering does not necessarily impact the functionality of the products it de-
livers, it does influence certain other properties. These can be classified as
product qualities and process qualities (cf. Fig. 2.2).

Product qualities are characteristics of product execution – like security,
safety, reliability and usability, which can be experienced by using the prod-
ucts – as well as product development qualities, like maintainability and porta-
bility, which can be observed when developing and maintaining the system.
Further, process characteristics like development effort (costs) and develop-
ment time are strongly impacted by product line engineering. The following
list gives an overview of key examples:

• Development costs : as large parts of the functionality of the systems are
realised by the platform, the development of new products can substan-
tially be reduced in size and complexity. As a consequence, development
costs are often reduced on a similar scale.

Product
Line
Engineering Product

Qualities
Process
Qualities

Reliability Usability Costs Time-To-Market

Product
Line
Marketing

Quality Leader
Pricing
Strategy

Product
Entry

Fig. 2.2. Qualities in product line engineering and product line marketing

28 2 Business

• Development time: as a consequence of the dramatic reductions of over-
all effort, the development time for new product variants is reduced in a
likewise manner.

• Reliability of product : product line engineering is not a reliability improve-
ment strategy per se, but reusing proven components leads to product
quality that is usually greatly improved over single system development.

• Usability: product line engineering may lead to strongly increased consis-
tency among the various user interfaces, if the same components, imple-
menting user interfaces, are reused across the product line.

• Portability: porting products across platforms can simply be seen as a
form of variability. If the product platform is prepared for this, portability
becomes a simple exercise.4

• Maintenance: product line engineering supports maintainability mainly in
two ways. First, if the change has already been addressed as part of the
platform, maintenance is simplified to product configuration. Secondly,
even if explicit changes of the product line infrastructure must be per-
formed, changes are usually greatly simplified because it is sufficient to
maintain the platform as opposed to each individual product. Although
changing a variable platform can be harder and more expensive than
changing a single product, the benefits of the change are reaped by the
entire product line.

Besides these fundamental impacts on qualities, product line engineering
also reduces the development risks.5

As an organisation sets up a strategy for its product line development,
it usually has one or more of the above goals as a basis for its introduction.
These product line aspects have corresponding effects on the market view as
shown in Sect. 2.4.

2.3.2 A Simple Model of Product Line Economics

As shown above, product line engineering has a large range of impacts on
the economic situation of an organisation. However, most models of product
line economics restrict themselves to the point of view of return on invest-
ment (ROI) with respect to costs. For certain companies, other issues (e.g.
time to market reduction, quality improvement) might actually dominate this
aspect.

Software cost modelling has been known for many years. The most well-
known models are probably COCOMO and COCOMO II [24]. In a product
line context, a cost model must describe the additional costs that are incurred
that result from transitioning to a product line approach. A simple cost model

4 Of course, preparing the platform can be hard work. On the other hand, a
potentially large number of products benefit from it

5 Where risk is defined as the probability of deviation from the intended result

2.3 Product Line Economics 29

has been presented in [23]. This model also provided the basis for describing
product line transitioning in [106]. It distinguishes the following cost functions:

• Cunique(): describes the cost for developing software for use in a single
product. A possible realisation of this model is given by models like CO-
COMO [24].

• Ccab(): describes the cost for developing a core asset base that is suited
to satisfy a particular scope (cf. Sect. 2.4.3). This summarises all costs of
development for reuse.

• Creuse(): describes the cost of reusing assets from the product line infras-
tructure when developing a new system.

As a consequence, we can describe the cost for developing the products in
the product line as: Cunique + Ccab + Creuse.

What does this mean in terms of numbers? Unfortunately, the situation
with respect to precise data is still rather poor as we still lack a lot of thor-
oughly validated data. Most data on the economic impact of product lines is
only available on a highly aggregated level, as we will see in Part II of this
book. So far only little data exists on a detailed level [123].6 The picture that
emerges looks roughly as follows:

• The cost of building assets for product line reuse is higher than building
assets for single system development. However, the precise overhead seems
to be strongly dependent on several factors, among them the product line
introduction approach and the specific functionality that must be gener-
alised. In [123] a variation of a factor between roughly 1.1 and 10 was
reported in otherwise identical circumstances, depending on the function-
ality alone. It seems, however, that for large systems an average factor of
two to three is often realistic.

• The cost for reusing seems to be very low in a product line situation, much
lower than for traditional reuse. The major reason is that traditional reuse
approaches rely on adaptation of the reused component as part of the reuse
step [108], while product line engineering does not.

In summary, product line engineering leads to additional set-up costs, while
also enabling much more efficient production of the individual systems, thus
recouping the efforts rather rapidly.

2.3.3 Advanced Aspects of Product Line Economics

The discussion of product line economics in the preceding section takes only
costs into account. As we discussed in Sect. 2.3.1, product line engineering
has further impacts on the business goals of an organisation, which should be
quantified. Some of these aspects stretch into the area of market valuation.
Only few models try to bridge this gap [121].
6 Note that there is quite some data on reuse in general, but this can be applied to

a product line situation to a very limited degree only

30 2 Business

The following are some of the issues that the simple model does not
address:

• Positive impacts like reliability, safety and usability.
• The reduction of time to market may lead to market advantages.
• Product line engineering provides additional flexibility for developing new

products effectively.

Increases in quality achieved as a side effect of product line engineer-
ing bring about two kinds of benefits. First, the cost of development is re-
duced as the effort for defect detection and correction during development
is minimised. Secondly, the quality of the products that are brought to the
market is likewise improved. The first effect is usually included in the ag-
gregated effort numbers; however, the effect on product quality stands out
independently and can hardly be assessed by an economic model of software
engineering alone, as adequate valuation of this fact must include aspects
like higher market share due to better quality, reduced customer support
costs, etc.

Shortening of the development time can be subdivided into two aspects.
First, products can be brought to the market earlier. Depending on the mar-
ket, this may lead to huge competitive advantages. Again, a market-oriented
model is needed as a basis for valuation of a product line approach. The
second aspect is of a more general nature. As product line engineering is usu-
ally set up to go over prolonged periods of time, an additional factor must
be taken into account: discounted cash-flow analysis. The idea is that a euro
today is worth more than a euro tomorrow. This is usually addressed by
adding a discounting rate to the various expenses. Discounted cash-flow anal-
ysis starts to make a difference as soon as the modelled period exceeds two or
three years.

Flexibility is a key issue that is mentioned over and over again, as organi-
sations are asked for motivation for product line engineering. However, closer
analysis reveals that flexibility is a two-edged sword. The key question is:
flexibility to do what? Product line engineering provides a platform on which
additional products can be built, but it does so only for some products. It
does not provide any support for other kinds of products. Moreover, it might
even prove to be a hindrance if basic assumptions of the platform do not fit
to the product to be built. We can thus interpret the platform as a form of
an option for building products.7

The key consequence of the search for flexibility is that product line en-
gineering and the range of products that shall be developed must be well
aligned. This is discussed further in the next section.

7 Actually, we can use this interpretation also as a basis to build corresponding
product line value models as shown in [53, 155, 121]

2.4 Product Management and Scoping 31

2.4 Product Management and Scoping

The advantages an organisation can reap from product line engineering
strongly depend on how well the product line infrastructure and the actual
products that the organisation is going to develop are aligned [67]. Thus,
the integration of technical and marketing-oriented product line planning
is key to successful product line development. This is also defined as scop-
ing, i.e. bounding the product line. Scoping can happen on three different
levels [119]:

1. Product portfolio scoping determines the range of products that shall be
supported. This is mainly driven from market inputs.

2. Domain scoping identifies major functional areas (domains) that are rel-
evant to the engineering of the product line [45, 134].

3. Asset scoping defines the precise functionality that reusable components
should support.

The three different types of scoping can be seen as three different levels
that build on each other. Thus, product portfolio scoping is a basis for do-
main scoping, which in turn provides the basis for scoping the asset base or
product line infrastructure. Currently, no single scoping approach addresses
all three levels. A rather comprehensive scoping approach is PuLSE-Eco [122].
It focuses mainly on domain scoping and asset scoping.

2.4.1 Product Portfolio Management

The definition and ongoing management of the product portfolio is at the
heart of product management, especially in a product line situation. Prod-
uct portfolio management depends strongly upon the definition of a prod-
uct line market as discussed in Sect. 2.2. Only a focused market defini-
tion provides a basis for establishing a stable product line infrastructure.
After a market has been defined, it is necessary to determine the relevant
product types.8 This defines the product portfolio. It can easily be char-
acterised by a simple list of products along with their major features and
functionalities. This is sometimes also called a product map [118]. In or-
der to determine the right products, they need to be analysed according
to their market position [106]. In particular, the decision should be made
whether or not existing products will be continued on the new platform.
This decision can be refined later, but a first cut should be made at this
stage.

8 We are interested only in the product types, as it is in general not meaningful –
or even impossible possible – in a customer-oriented market to define the various
customer products in advance. In a purely market-oriented situation, the two
might actually be identical

32 2 Business

Feature is fully
implemented

Feature is
completelyabsent

Basic
requirementsSatisfiers

Delighters

High
satisfaction

Low
satisfaction

Fig. 2.3. Requirements in the KANO model

A widely used approach to defining new products is the KANO model.
In this model requirements are subdivided into the following categories (cf.
Fig. 2.3):

• Delighters : These go beyond standard customer expectations – and thus
beyond the competition. In order to be successful, a product should have
some delighters.

• Satisfiers : Customer satisfaction is roughly proportional to the degree of
satisfaction of the requirement.

• Basic requirements : These correspond to fundamental expectations of the
customers. As a consequence, these must be fulfilled in order for a product
to be successful.

This distinction provides the basis for determining the chances of a product
on the market.

In order to arrive at a full portfolio definition, we need to analyse the
interrelation among its products. Different products within a product line
may compete with each other (product line cannibalisation) or they might
even support each other (e.g. an entry-level product designed to get people
buy into the product line combined with higher-level products designed to
make customers migrate along this line of products). Only when the various

2.4 Product Management and Scoping 33

products are harmonised with each other can we accept the product portfolio
definition as being appropriate.

An additional complication when defining a basic product portfolio is that
the product line as seen from a marketing point of view and the engineered
product line need not be the same [68]. For example, deviations may occur if
the product line infrastructure is used in order to develop products for third
parties (marketed under a different label) or if third party products make up
for part of the own product line. All such additions and exceptions should be
identified as input to product portfolio scoping.

2.4.2 Domain Potential Analysis

Domain potential analysis builds on the result of product portfolio scoping. It
requires an input that describes the specific products and their requirements.
These shall be built as a result of product line engineering. The core task of
domain potential analysis is to perform an analysis of the reuse potential in
a product line.

All modern approaches to domain potential analysis are based on the con-
cept of an assessment [12, 120]. They assess the domain and the overall product
line development based on a number of domains. As an example, we here pro-
vide the list of dimensions used in the PuLSE-Eco approach [122]. These are
differentiated into two main categories: viability and performance dimensions.

The viability dimensions aim to determine whether product line engineer-
ing can be successfully established in the domain. This is not only dependent
on the domain alone, but also requires additional information like organisa-
tional and resource constraints:

• Maturity: the domain must be sufficiently mature so that the necessary
concepts are established and can be codified in an appropriate way.

• Stability: the domain must be sufficiently stable so that a product line
infrastructure can be stable as well.

• Resource constraints : setting up a product line initiative requires an initial
investment. The necessary resources must be available.

• Organisational constraints : the organisation must be appropriate for a
product line – or at least the necessary flexibility must exist to make it
appropriate.

The performance dimensions describe how successful a product line effort
can be expected to be:

• Market potential : in order for a product line engineering initiative to suc-
ceed, the necessary market potential needs to exist. Ideally, this is already
clarified in the product portfolio scoping phase. We further differentiate
external and internal market potential. The external market potential
describes the potential relative to customers who are not part of the or-
ganisation, while the internal market potential describes the potential that
internally produced components are actually used in the final products.

34 2 Business

• Commonality / variability: the presence of commonality and variability is
a basis for a product line. However, the variability should be systematic
to some degree, so that systematic reuse can be enforced.

• Coupling / cohesion: coupling and cohesion impact the ease with which
adequate, reusable components can be built. If there is strong coupling
with other domains, it becomes very difficult to develop reusable assets,
as the assets will exhibit a lot of context dependencies.

• Existing assets / legacy: existing assets can give a product line initia-
tive a serious head-start as they may provide a good basis for developing
components in the product line infrastructure. On the other hand, exist-
ing products that predate the product line engineering effort but must
be maintained from this basis in the future may require huge additional
effort.

As a result of a domain potential analysis – regardless the approach – we can
expect that the viability of product line engineering is established at this stage
and that those areas that provide the best basis for product line engineering
have been identified as well.

It might come as a surprise, but usually there are huge variations among
domains with regard to serving as a basis for product line engineering. Some
sub-domains might be well-suited while others might be so completely de-
pendent on the individual customer situation that it does not make sense to
provide any reusable components. It is one of the strengths of product line
engineering that it still can take optimal advantages of these situations.

2.4.3 Asset Scoping

Asset scoping is still part of the business perspective, as it classically takes a
return-on-investment perspective. But at the same time it bridges to the devel-
opment of the software architecture, as the architecture is key in the definition
of further implementation-oriented assets. Asset scoping provides initial ag-
gregations of functionality that are defined based on a return-on-investment
perspective and can be a starting point for the software architecture, but it
does not introduce a technical or implementation perspective.

In the PuLSE-Eco approach, asset scoping is realised by the so-called
reuse infrastructure scoping component. This component consists broadly of
the following four steps:

1. Formalise the reuse goals as economic functions.
2. Identify (detailed) relevant functionality.
3. Characterise functionality in terms of economic characterisation functions.
4. Derive asset proposals from evaluation results.

In the first step, the economic goals for product line reuse are detailed and
transformed into an economic model attuned to the specific organisation. The
more precise these models are, the more precise the resulting evaluation will
be. On the other hand, the models should not be made too complex as the

2.5 Summary 35

base data already has significant impreciseness. As a result of this step, high-
level benefits – like effort-saving – are broken down into elementary, directly
measurable elements, like size of component or developer productivity. These
elementary functions are called characterisation functions as they serve to
characterise elementary functionality from an economic perspective.

The level of granularity of functionality required in this step is much finer
than in the previous steps, as we want to identify the specific functional-
ity that should be combined. This requires a more detailed identification of
requirements than in the previous steps.

The next step aims at collecting values for the characterisation functions
for individual requirements in order to perform the calculation of economic
benefits. This often becomes the stumbling block for organisations aiming at
such an approach. If there is little or no background knowledge and experi-
ence available on measurement programs, the organisation will have signif-
icant problems to estimate adequate values for the various characterisation
functions. These deviations and errors may influence the final results.

Asset scoping is particularly relevant in case a new product line infrastruc-
ture is set up from scratch. It also makes certain demands on the organisation,
like being able – at least to some degree – to perform measurement-based man-
agement. This is very often not the case in an organisation, so usually only
the first two steps are performed. In these cases, the benefits of a quantitative
analysis of reuse potential cannot be reaped.

2.5 Summary

Product line engineering strongly impacts the way a company is doing busi-
ness. It provides a basis for the efficient development of products for whole
market segments. As a consequence, the definition of the company’s markets
and business must be thoroughly aligned with its activities in product line
engineering. Ideally, business strategy drives technological decisions and is in-
fluenced by technical opportunities and difficulties with little or no lag time
in between.

Companies that effectively establish a product line engineering effort are
able to reap substantial benefits that improve their market positions. While
cost and time to market advantages are the most well known, quality im-
provements in terms of reliability or usability can as well provide a substantial
market advantage.

In order to optimise the economic returns of a product line initiative, var-
ious models and approaches have been developed. Existing economic models
of product line engineering still focus on cost issues, although some models
look at the broader picture.

Optimally, aligning product line engineering with the business implies that
an organisation has a well-defined flow from its high-level business perspective
to its product portfolio and finally to the definition of specific components
relevant to its product line infrastructure.

3

Architecture

The architecture is an important part of any non-trivial system. It roughly
bounds the scope of functionality that a system can handle, and plays a big
role in determining the system’s quality attributes. A common architecture is
essential for a set of products to efficiently share large parts of their imple-
mentation.

A product line architecture serves the needs of not one but potentially
many different products. To that end it must capture the commonality of
these products and deal with their differences in an effective manner.

In this chapter, we discuss the topic of architecture in a product line en-
gineering context. The first section explains the reason for having a software
product line architecture. In Sect. 3.2, attention is paid to the four primary
elements of architecture: its requirements, concepts, structure and texture.
The following sections describe how a product line architecture is designed,
evaluated and evolved respectively. The chapter ends with a summary.

3.1 Motivation

The architecture of a system captures its high-level design decisions, including
the organisation in components and their interaction, as well as principles and
guidelines for implementing and evolving the architecture.

The shared architecture in a product line is called the reference archi-
tecture. The reference architecture describes a generalised architecture that
provides a solution for the range of products in the product line. It contains
the variability that is instantiated in product architecting, although not all of
it is visible on the architectural level.

The reference architecture is a result of domain engineering. It is used
as a common asset in application engineering, where it is instantiated and
extended to create product architectures. Extensions happen in accordance
with the variation points that were defined in the reference architecture.

38 3 Architecture

Architecture is especially important in product line engineering because
a shared architecture makes it easier for products to share assets. Reusable
assets are created with the shared architecture in mind. This enables domain
engineers to make assumptions about the architectural context in which the
common assets that they create or develop will be used. As a result, creat-
ing assets becomes easier and cheaper. Further, incorporating also becomes
much easier for application engineers as long as they adhere to the reference
architecture.

3.2 Architecture Concerns

Architecture has four primary concerns [73]:

1. Architecturally significant requirements : those requirements that have an
essential impact on the architecture.

2. Conceptual architecture: describes the key concepts of the architecture,
abstracting from implementation details.

3. Structure: captures the decomposition of the system into components and
their relationships.

4. Texture: a collection of rules for implementing the architecture and evolv-
ing it over time. These rules may be expressed as coding conventions,
design patterns and architectural styles.

Each of these concerns is explained below.

3.2.1 Architecturally Significant Requirements

In theory, requirements engineering is a prerequisite to architecting, and thus
requirements for the architecture will be established. In practice, architects of-
ten cannot afford to wait until a stable requirements specification is available
to them. Instead, they have to deal with incomplete and changing require-
ments. Next to taking part in the ‘normal’ requirements engineering process
as stakeholders, architects take the evolving set of requirements and dig up
and document the architecturally relevant requirements: a small set of re-
quirements that will really shape the reference architecture.

A reference architecture for a software product line has to deal with the
requirements of many (planned) products. Requirements that are common
to all should be satisfied by the reference architecture. Other requirements
may be unique for certain products, some of them may be conflicting. The
reference architecture must support such variability in its concepts, structure
and texture.

Two types of requirements can be distinguished. Functional requirements
determine what is realised. Quality requirements drive how it is implemented.
Desired quality properties – such as those with respect to performance, safety,

3.2 Architecture Concerns 39

or reliability – are often decisive during the design phase of an architecture.1 In
product line engineering, variability is one of the most important architecture
drivers.

3.2.2 Conceptual Architecture

The conceptual architecture describes the major concepts that govern how the
system works, without going into implementation details. A conceptual model
is a description of the concepts in the domain of interest, showing the most
important concepts in the problem domain, and their relations. In a reference
architecture, it captures the problem domain that is common to the entire
product line. It serves as a “a mental model that allows one to understand and
simplify the problem” [55] This makes the conceptual model a good vehicle
for communication between and with stakeholders of the architecture.

3.2.3 Structure

The architectural structure is the decomposition of a system into its major
components, and their relationships. A component is a unit of composition
with contractually specified interfaces. The term can refer to both a high-level
design unit and its physical implementation.2 Interfaces describe not only the
services that a component offers, but also the context that is required for its
use. It can be deployed independently as a building block by others than its
original developers and maintainers.

Components can be generic or application-specific. They can be designed
and developed in-house, developed by a third party according to a given de-
sign, or bought as a commercial off-the-shelf product. In the latter case, some
wrapping is usually required to fit the component in the architecture. Wrap-
ping is also a means to reduce the dependency on an external party, even if
it is technically not needed per se.

3.2.4 Texture

The texture of an architecture guides both designers and architects:

• Its guidelines and rules tell designers how to work out the architecture in
detail, and how to implement it. It is used throughout the design of the
system, ensuring a consistent approach to interpreting the architecture
and solving recurring problems.

• It guides architects in evolving the architecture over time without destroy-
ing its core concepts. It captures the basic ideas (or philosophy) that lead
to the architecture and that keeps it a coherent whole. This part of the
texture is sometimes called meta-architecture [30].

1 On the lower design levels, the main quality concerns deal with keeping the design
and source code easy to understand and maintain

2 The context of the text will make clear which interpretation is meant

40 3 Architecture

The texture may contain such things as coding conventions, design pat-
terns, architectural styles [133] and principles [156].

3.3 Product Line Architecting

Although architecting methods that aim specifically at product lines do exist,3

they can all be used for single system development too. Vice versa, many
existing single-system architecting methods have been used successfully for
designing product line architectures, for example Attribute Driven Design
[18], Bosch [25] and Bredemeyer [30].

The main challenge in designing a reference architecture is based on the
fact that the architect has to deal with many different products at the same
time. In some cases, especially in large companies, each product has many
stakeholders. In practice, this means that communication becomes even more
important than in single-system architecting.

Getting the requirements right for all the products is hard, especially since
there will be conflicts between requirements for different products. These con-
flicts must be resolved in the architecture. Deleting products until there are
no conflicts left would be an easy way out, but leads to a very meagre product
line. Instead, support for variability must be an integral part of the reference
architecture.

Variability is modelled in a variation model, as described in Chap. 1. The
reference architecture must implement all the variation points of the product
line to support the right scope of products.

3.3.1 Basic Variability Techniques

On an abstract level, there are three basic techniques to realise variation in
an architecture: adaptation, replacement and extension.

In the adaptation technique, there is only a single implementation available
for a certain component, but it offers interfaces to adjust its behaviour. Such
interfaces may take the form of a configuration file, run-time parameterisation
or even patches to the component’s source code, to name some options.

In the replacement technique, several implementations of a component are
available. Each implementation adheres to the component’s specification as
described in the architecture. In application engineering, one of the available
implementations is chosen, or a product-specific implementation is developed
instead, again following the given specifications.

The extension technique requires that the architecture supplies interfaces
that allows adding new components to it. The added components may or
may not be product-specific. The difference with replacement is that now

3 See [91] for a comparison of five product line architecting methods: COPA, FAST,
FORM, KobrA and QADA

3.3 Product Line Architecting 41

replacement extensionadaptation

Fig. 3.1. Three basic techniques for realising variability in an architecture

only generic interfaces are available for adding components, allowing different
types of components to be added. With replacement, the interface specifies
exactly what the component should do, and only how it is done varies. Also, a
number of components can be added using the same interfaces, whereas with
replacement, a single (default) component is replaced by another one.

In some cases, the reference architecture covers only a sub-domain of a
product. The reference architecture may then be a (small) part of the appli-
cation architecture. From the domain engineering point of view, this would
also be a case of extension.

Figure 3.1 graphically depicts these three basic techniques.

3.3.2 Concrete Variation Mechanisms

In the reference architecture, these techniques are deployed to model the vari-
ation points. The architecture’s texture describes the implementation mecha-
nisms that should be used to realise the variation points in the software assets.
Examples of such mechanisms are as follows [9, 25]:

• Inheritance (adaptation): given a class and its implementation, a sub-
class is introduced that changes some of the default behaviour as needed
by the application.

• Patching (adaptation): if the source code of a component is available,
patching can be an effective way to change part of its behaviour without
taking over the burden of maintaining the entire component.4 The patch
is maintained by the application engineering group, while the component
itself is maintained in domain engineering.

4 Popular in the world of open source software development, patching can also
be applied within the boundaries of a single organisation as long as different
development groups agree to share their source code. This is also referred to as
Inner Source

42 3 Architecture

• Compile-time configuration (adaptation): compilers may offer mechanisms
to vary a component at compilation time. Pre-processors and macros are
ways of achieving variability. Makefiles can compile a component into sev-
eral binary variants, or select the right components to be linked to an
executable.

• Configuration (adaptation): in this case, a component implementation has
different variations internally, and provides an interface to choose among
the possibilities. A simple configuration file may do the trick. Other ex-
amples are parameters in procedure calls.

• Code generation (replacement): a code generator reads some kind of high-
level specification, for example a model, or a script, and generates the code
required for a certain component or even a whole product. The complexity
of generators varies. Sometimes, all that needs to be generated is glue
code between a set of reusable implementations. In other cases, the code
generator can be very complex and its development and maintenance a
significant cost factor.

• Component replacement (replacement): the default implementation of a
component is replaced with another one.
In some cases, the reference architecture may provide only an empty imple-
mentation by default, because there is no common implementation avail-
able. The chosen implementation may be product-specific, or common for
the whole or part of the product line. It may be developed in-house, either
in domain or application engineering, or it can be a third-party compo-
nent. In the case of a commercial off-the-shelf implementation, wrappers
may be required to bridge the available interfaces to the desired ones.

• Plug-ins (extension): the architecture offers interfaces that allow plug-
in components to be added to the system. The plug-ins provide certain
functionality. Plug-ins may be common or application-specific.

3.4 Evaluation

Evaluation is an important step in every architecture design process. Infor-
mal evaluations are done most often, for example by going through use case
scenarios at a whiteboard, making back-of-the-envelope performance calcula-
tions or programming out pieces of the architecture to test certain concepts.
More formal evaluations are done less frequently. Examples are building proof-
of-concept prototypes, performance modelling and evaluation workshops, for
example ATAM, CBAM and SAAM5 [37].

When evaluating a reference architecture, close attention should be paid
to the variability support. Does the proposed architecture support all prod-
ucts in the product line? Or is it perhaps too generic, trying to solve too
5 In full, Architecture Trade-off Analysis Method (ATAM), Cost Benefit Analysis

Method (CBAM) and Software Architecture Analysis Method (SAAM)

3.5 Evolution 43

many problems at once? Application architectures should be evaluated for
their specific product requirements. Certain issues may be revealed that can-
not be solved in application engineering, but are a problem in the reference
architecture. Care must be taken such that feedback reaches the right people,
for example by including product line architects in application architecture
evaluation sessions.

3.5 Evolution

A successful architecture will inevitably face unforeseen requirements. In fact,
its success may well depend on how it is able to cope with them. A well
designed architecture can handle certain new requirements, mostly if the new
requirements were more or less expected. Usually, the architecture will sooner
or later face requirements that it cannot support in its current form, and
therefore it must change in order to be able to. This is called intentional
evolution.

The following are some sources of new requirements:

• The market demands new features or enhanced quality properties. This
is rather common not only in many technology-intensive markets such
as consumer electronics, but also in professional medical equipment. The
features and properties may end up in new versions of existing products,
or lead to a whole new product.

• On the other hand, features or products may become redundant. For ex-
ample, most personal computers are no longer equipped with a floppy disk
drive. Such changes may be a chance to simplify the architecture and cut
off some dead wood.

• When a company acquires another company, a whole range of existing
products may be added to a product line.

• Third-party components need to be updated. Support for deprecated tech-
nology can often be bought, but is usually expensive. It may be cheaper
to evolve the architecture and its implementation, especially if it reduces
maintenance costs.

• Technological advancement makes it attractive to introduce new technol-
ogy. For example, a home-grown solution to a problem that was exotic at
the time can now be replaced by a commercially available component.

When new requirements come up, the existing architecture must first be
evaluated for its capability to deal with them. In most cases, unforeseen re-
quirements will not be supported by the architecture. Still, the evaluation will
give insight into how much the architecture must be changed to handle them
properly.

Evolution also happens without purpose, in which case it is called uninten-
tional. Even if a documented architecture remains stable, its implementation
changes because of maintenance. If this process is not guided and monitored,

44 3 Architecture

it can lead to two problems: a mismatch between the documented architec-
ture and its implementation, and architectural erosion, also known as software
entropy or software rot.

Over time, the documented architecture and its implementation drift fur-
ther apart. If nothing is done about it, at one point the gap will be so large
that reading the architecture documentation does not help to understand the
software anymore.

Architectural erosion means that the design of the software is uninten-
tionally ruined by a series of small changes. This may start with innocent
little shortcuts here and there. Given enough of them, these shortcuts make
it impossible to understand the rationale behind the original design.

The architecture texture can play an important role in slowing these pro-
cesses down. Its guidelines apply not only during the initial implementation,
but also during maintenance.

Refactoring is another important way of fighting erosion [57]. Refactoring
means that design is improved without changing the functionality of a system.
Originally described for use on a detailed design level, it can be applied to all
levels of design, including the architecture.

3.5.1 End of Life

The lifespan of an architecture depends on the problem domain that it serves.
Some systems, like professional medical equipment, may be actively main-
tained in the field for decades, whereas others, like mobile phones, may have
a new architecture every third year. In any case, no architecture lives forever.

An architecture can handle only so much evolution before it breaks. When
evolving the architecture to support new requirements becomes too expensive
or risky, the architecture has reached its end of life. This does not mean that
it becomes worthless.

For one, there may be products in the field that were built on (an earlier
version of) the architecture. Perhaps they are even actively maintained.

Moreover, the architecture represents a wealth of knowledge on and ex-
perience in the problem domain. Its requirements, concepts, structure and
texture can be an important source of assets and inspiration for the new
reference architecture.

3.6 Summary

The reference architecture is a key asset of a product line. It enables the
efficient sharing of software-related assets. As such, it must reflect the scope
of the product line, and support its commonality and variability.

The reference architecture can be adapted, extended or partially replaced
to derive application architectures. The ways in which this can be done are
captured in the texture of the reference architecture.

3.6 Summary 45

Given enough time of life, a reference architecture will evolve, even though
it was designed with a range of planned products in mind. Care must be taken
that the architecture and its implementation do not drift apart too far dur-
ing the evolution. Intentional evolution is done to meet new requirements,
for example stemming from the introduction of new products to the line. As
the implementation changes, so should the documented architecture. Unin-
tentional evolution is a normal part of software maintenance. Refactoring is
crucial to keep the design and architecture understandable and effective.

An architecture has reached its end of life once it becomes more expensive
to change the architecture than to create and implement a new one. The old
architecture can serve as a valuable source of knowledge when creating its
successor.

4

Process

Software product line engineering comprises two life-cycles: domain engineer-
ing and application engineering. During domain engineering, a common plat-
form is developed and maintained. A set of reference requirements, a reference
architecture, and a set of reusable components form the major parts of this
platform.

The platform is the basis for application engineering. Application engi-
neering develops the products in the product line. The platform needs to be
flexible enough to support all planned products. It consists of assets that can
be tailored to the needs of specific products through managed variation points.

In the rest of this chapter we explore the process dimension. First, we
explain the importance of process in a product line engineering context. The
following section describes a high-level framework for software product line
engineering as a whole. Sects. 4.3 and 4.4 zoom in on the sub-processes in
domain engineering and application engineering respectively. The chapter ends
with a summary.

4.1 Motivation

It is widely accepted that the quality of a development process strongly influ-
ences the quality of the systems that it produces [140]. No matter how good
the tool, it is useless without a proper way of using it. Software product lines
are not different. They can be great for companies to make a range of related
software intensive products, but one still needs a good process to make them
work.

Jones and Northrop argue that process discipline is extra important when
software product line engineering is considered [74]. More co-ordination, dis-
cipline and commonality of approach is needed than for single system engi-
neering, and since the dependencies within the organisation are greater, pre-
dictability and quality become more critical. Disciplined process management

48 4 Process

and execution can help to improve these aspects and thus contribute to the
success of a software product line.

4.2 The Software Product Line Engineering Framework

Figure 4.1 shows a framework for software product line engineering. The
framework divides product line engineering into two life-cycles : domain engi-
neering and application engineering. Domain engineering results in the com-
mon assets that together constitute the product line’s platform. Application
engineering results in delivered products. Within the two life-cycles, there are
nine sub-processes. Eight of the engineering processes form four pairs: require-
ments engineering, design, realisation and testing are done in both domain
and application engineering. These pairs of processes are strongly connected.
The domain engineering sub-processes result in common assets that are used
in their application engineering counterparts to create products. In return,
the sub-processes in application engineering generate feedback that is in use
in domain engineering to improve the common assets. This feedback loop is
essential to ensure that the platform remains suitable for the efficient produc-
tion of end products. In some cases, application-specific assets are reused in

D
o

m
ai

n
E

n
g

in
ee

ri
n

g
A

p
p

li
ca

ti
o

n
E

n
g

in
ee

ri
n

g

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Domain
Design

Application
Requirements
Engineering

Application
Realisation

Application
Testing

Application 1 - Artefacts

Architecture Components TestsRequirements

Common assets

Product
Management

Application N - Artefacts

Application
Design

Requirements Architecture Components Tests

feedback

(assets)

Fig. 4.1. The software product line engineering framework

4.3 Domain Engineering 49

domain engineering to become part of the platform, but that is a side effect –
not a goal – of application engineering.

4.3 Domain Engineering

Domain engineering is the life-cycle that results in the common assets that
together form the product line’s platform. It is further responsible for scoping
the product line, and ensuring that the platform has the variability that is
needed to support the desired scope of products.

4.3.1 Product Management

Product management deals with the scope of a product line and its market
strategy. The scope determines what the common and variable features of the
product line are. Existing products and shared development assets are docu-
mented and a product roadmap describes future products and their planned
release dates.

In some cases, application engineering also has product management pro-
cesses. Obviously, domain engineering and application engineering strongly
influence each other, and the processes must be well aligned to be effective.

More information on product management and scoping can be found in
Sect. 2.4.

4.3.2 Domain Requirements Engineering

Domain requirements engineering is the process of creating and managing
requirements for the reference architecture and its implementation. The re-
sulting reference requirements should cover the requirements for all (foresee-
able) applications within the product line scope. They include common re-
quirements and the variation points that the product line architecture should
support.

Requirements engineering has five basic phases [106]:

1. Elicitation: the analysis of the needs of users and other stakeholders.
2. Documentation: means writing those needs down as product requirements

in a precise way.
3. Negotiation: stakeholders try to reach an adequate level of consensus on

the requirements as they are documented. The way in which this is done
depends heavily on company culture.

4. Validation and verification: it results in a set of requirements that are
clear, complete, correct and understandable.

5. Management : it deals with maintaining the requirements throughout the
development and the rest of the platform life-cycle. Often, the previous
phases will be revisited during the management phase, as new require-
ments come in and existing ones change.

50 4 Process

Stakeholders play an essential role in each of these phases. The end product
stakeholders are typically customers and all kinds of users. They may be
represented by internal departments, such as marketing, but they can also be
involved directly. These stakeholders care about how the features and quality
properties of the platform influence end products.

But domain engineers also have to take into account the users of the plat-
form that they are creating. These platform stakeholders are the ones respon-
sible for application engineering. They are interested in creating products as
efficiently as possible. They want a platform that allows them to do this,
leading to requirements regarding documentation, the quality of components,
their testability and a simple but flexible reference architecture.

The platform requirements have to deal with the full range of products
in the line. Some of these requirements are common to all products, others
will vary. The domain requirements must take this variability into account, so
that they can be used as templates in the requirements engineering processes
for the applications.

The variability model, as discussed in Sect. 1.4, guides the variation in the
requirements. As an example, Fig. 4.2 shows how variability can be captured
in use case scenarios and diagrams.

VariabilityDiagramVariability DiagramTabular ScenarioTabular Scenario

4. System permits to
enter the home

3.Inhabitant touches
fingerprint sensor

3.Inhabitant enters
PIN

2. System requests
authentication

1.Inhabitant approaches
the front door

Home Security
System

Inhabitant
VP

Door Lock

Keypad

V
Fingerprint

Scanner

V

UseCaseDiagramUse Case Diagram VariabilityDiagramVariability Diagram

Activate Camera
Surveillance

Activate Motion
Detection

Activate Security
System

<<include>>
<<include>>Inhabitant

Home
Security by

VP

Camera
Surveillance

V
Motion

Detection

V

Fig. 4.2. Variability in use case scenarios and diagrams [106]

4.3 Domain Engineering 51

4.3.3 Domain Design

Domain design takes the reference requirements as input and creates a ref-
erence architecture for the platform. This architecture serves as the basis for
designing products during application design.

The architecting process is described in Sect. 3.3.

4.3.4 Domain Realisation

In domain realisation, the common assets are designed and created. It can be
worthwhile to use existing implementations instead of making them anew. For
each asset, a make/buy/mine/commission decision is made, although often
unconsciously [38]:

• Make: the asset is built in-house. The main advantage of this option is the
level of control that it implicates. The organisation has full control over
the specification and implementation of the asset, limited only by its own
capabilities. This is especially valuable when the assets are distinguishing
for the product line, for example because they enable an innovative feature.

• Buy: the asset is bought as an off-the-shelf product. Commodity assets that
are readily available in the market are often cheaper when bought from
others. Examples are not only operating systems (e.g. Windows, Linux),
middleware software (e.g. J2EE, .NET), but also development tools and
processes (e.g. RUP, CMMI).

• Mine: the asset is reused from an existing system within the company. In
this case, the organisation opens its lumber room and searches its existing
systems for an asset to be used. Their freedom is limited by the range of
assets that are available, and how easy it is to adapt them to the platform.
Especially if the system being mined has reached end-of-life or is out of use,
getting high-quality assets out of it can take significant reverse engineering
effort.
In some cases, an application-specific asset can be taken and turned into
a common asset. If the application engineering process responsible for the
asset is still running, this can be relatively easy.1

• Commission: the asset is assigned to be built by a third party. The as-
set’s specifications are created in-house, but it is left to a third party to
implement it. This may well create a gap between the ones who make
the specifications and the ones who implement it. This implicates the risk
with it that the implementation does not meet the original intention of
the asset. This risk should be addressed properly, e.g. by putting effort in
creating very high quality specifications, or installing extra communication
mechanisms and short feedback loops.

1 Often, a series of related assets can be made reusable in one go, e.g. apart from
a component’s implementation, its design, use cases, documentation, end-user
documentation, test, etc.

52 4 Process

Usually, the common software in a product line is grouped in the form of
components and the interfaces that they provide and require. The interfaces
serve as a contract between a component and its context. Provided interfaces
describe what the component offers, whereas required interfaces specify what
the component needs to do its job.

A single component can have many different interfaces. A component may
implement several interfaces that describe its major functionality, and others
that deal with aspects such as logging or testing. A component’s variability
may be made accessible through a configuration interface, but it may also use
a required interface to enquire about variability-related information from its
environment and configure itself accordingly. To achieve variability, different
components can implement the same set of interfaces. Other mechanisms for
implementing variability have been described in Chap. 3.

4.3.5 Domain Testing

A product line platform ends up in many different end products. Errors in
the platform may find their way to each of these products, which is why it is
very important to make sure that the platform is of sufficient quality. Testing
is crucial.

Software testing is the process of uncovering evidence of defects in software
systems [93]. There are several types of tests [92]2:

• Dynamic testing covers a range of tests. Unit testing for individual com-
ponents and interfaces, integration testing for interactions between com-
ponents and system testing for the whole executable platform.

• Regression testing is done to ensure that existing specifications are still
met after a component has evolved. Some regression tests cover code that
was not changed at all. This code may contain defects that will surface
now that it is used in different ways by those parts of the component that
did change.

• Acceptance testing is done for third-party mined and acquired components.
Although mining and acquisition may lead to lower development costs,
they usually result in increased test efforts. Acceptance testing may also
be done for the platform as a whole, with the customers being those who
use the platform for product development.

A major problem that has to be addressed during domain testing is vari-
ability. The variation mechanisms that make it possible to base many different
products on a single platform also make it very hard to thoroughly test the

2 Although non-executables cannot be tested, it is important that their quality is
verified. Source-code can be checked for its conformance to programming rules,
design and architecture during code inspections. Design and architecture can be
evaluated, and validation and verification are essential to produce high-quality
requirements. McGregor calls this static testing [92]

4.4 Application Engineering 53

platform. Even a modest number of variation points will quickly lead to an
immense number of possible configurations, making it impossible to test all
potential products in a product line. Since future products cannot be pre-
dicted precisely, one cannot test the platform for each product in the scope in
advance. This makes a brute force approach to testing – where all platform
components are tested in all possible configurations – impossible. Instead, a
limited number of configurations will be tested. The suite of tested platform
instances requires careful consideration and management, since each costs ef-
fort to create, maintain and test on its own.

As an example, consider a reference architecture that has a plug-in varia-
tion mechanism. In this case, the software platform has gaps that need to be
filled with product-specific components during application engineering. The
required and provided interfaces for these components are precisely docu-
mented, but the final implementation will differ from product to product. To
test the platform, the gaps must be filled somehow. This can be done by cre-
ating stubs: components that adhere to the interfaces but have a controlled
dummy behaviour for test purposes. However, these stubs reveal their own
problems [106]. They cost effort to create, maintain and also test since stubs
can be a source of defects themselves. Moreover, they can never fully replace
the real plug-in components that will be developed in application engineering.

4.4 Application Engineering

Application engineering takes the common assets of the product line and
uses them to create products. Application engineers bind variability in the
common assets to create instances that are fit for the products that they are
developing. They combine these instances with application-specific assets that
they develop themselves.

4.4.1 Application Requirements Engineering

Application requirements completely specify a particular product. The re-
quirements come from the stakeholders of the product under development,
for example end-users, product managers, customers or service engineers. The
variability model and the common and variable domain requirements can be
a valuable tool to elicit stakeholder requirements [106].

The requirement assets produced in domain engineering are a start, but
they will not satisfy all stakeholder requirements completely. The gap between
what is available and what is required must be analysed, and a trade-off deci-
sion taken for each unsatisfied requirement. The requirement may be satisfied
by application-specific assets. Alternatively, the stakeholder may be able to
adapt the requirement such that it can be satisfied by assets offered by the
platform. Another option is to drop the requirement completely, or postpone
it to a later version of the application.

54 4 Process

If a requirement is shared by many applications, feedback may be given
to the domain engineering life-cycle to achieve that the next version of the
platform does satisfy this requirement. Any available application-specific so-
lutions may then be generalised to become part of the platform, or an entirely
new asset can be created. Later, the application-specific assets are replaced
by the solution offered and maintained as part of the platform.

4.4.2 Application Design

In application design, a product architecture is derived from the reference
architecture. Its variation points are instantiated to create an architecture that
deals with all the requirements of a certain product. The resulting architecture
is extended with new components and interfaces, or particular components are
replaced, in order to satisfy all application-specific requirements that are not
covered by the reference architecture. Chapter 3 describes the relationship
between reference and application architectures.

4.4.3 Application Realisation

The goal of the application realisation process is to implement products. The
common assets delivered by the domain realisation process are used to min-
imise the effort and time needed to do this.

Domain interfaces can be reused without changes, but variable compo-
nents have internal variation points that must be bound. To this end, the
components offer mechanisms such as parameter bindings and configuration
files.3 Often, a number of domain components need to be similarly configured
in a single application. Repeating the same configuration by hand for each of
them is error-prone and costly. Specialised configuration components or tool
support are two options to do this more efficiently.

In application realisation, common assets are complemented by application-
specific components. In many cases, such components will provide interfaces
that are specified by the domain architecture. A plug-in framework, for ex-
ample, will prescribe interfaces to register a plug-in component and allow it
to hook to the framework in a number of ways. Apart from this, creating
application-specific components is done in almost the same way as in single-
system development.

4.4.4 Application Testing

Application testing is performed to ensure that an application is of sufficient
quality. Although the common components were tested in domain engineer-
ing, this does not mean that they should not be tested again. The domain
components have internal variability that was bound to make them useful in
3 A list of variation mechanisms is given in Sect. 3.3

4.5 Process Maturity: CMMI 55

the application at hand. Section 4.3.5 shows that it is impossible for domain
engineers to predict and test all possible combinations of configurations in
advance. Therefore, the configured domain components must be tested again
in the context of this specific application to chase out more bugs.

For those application requirements that are identical to domain require-
ments, domain tests can be repeated. Other tests will contain variation points
that must be bound to match the application. For application-specific require-
ments, new tests must be developed and executed.

4.5 Process Maturity: CMMI

A capability maturity model is a reference model of mature practices in a
specified discipline. It can be used to improve and appraise the capability of
an organisation to perform that discipline [140].

The Capability Maturity Model Integrated (CMMI) was created and is
maintained by the Software Engineering Institute (SEI). The SEI developed
its first capability maturity model in the 1980s: the CMM for software engi-
neering. Several CMMs for other disciplines followed, until recently they were
integrated in the CMMI.

The CMMI is a framework of capability models in several disciplines: soft-
ware engineering, systems engineering, integrated product and process devel-
opment, and supplier sourcing. The CMMI models for specific disciplines can
be combined as needed by their users. It is recommended to combine the soft-
ware engineering and systems engineering models, as they are similar. The
resulting model is called CMMI-SE/SW.

The CMMI framework can be extended to suit the needs of other disci-
plines through the introduction of discipline amplifications. Discipline ampli-
fications are model elements that contain information relevant to that par-
ticular discipline. Each amplification is associated with a specific practice. In
Chap. 6, we describe amplifications for the CMMI that make it suitable for
software product line engineering.

4.5.1 Maturity Levels

CMMI models describe discrete levels of process improvement.4 Each higher
maturity level builds on its predecessor. There are five levels:

1. Initial : an immature organisation with an undefined process. Results are
unpredictable and the organisation cannot be expected to repeat past
successes.

4 Actually, the CMMI models come in two flavours: continuous and staged. This is
done to enable the integration of certain CMM models. Here we will focus on the
staged models

56 4 Process

2. Managed : the organisation has enough discipline to retain existing prac-
tices even during times of stress. Requirements are managed, processes
are planned, performed, measured and controlled, on a per-project basis.

3. Defined : the organisation has a set of standard processes that are tailored
to meet the needs of individual projects.

4. Quantitatively managed : processes are managed based on quantitative
objectives that meet the needs of customers, end-users and internal stake-
holders. Detailed performance measures are collected and analysed to
support fact-based decision-making.

5. Optimising: this level focuses on continuously improving the performance
of the organisation. The organisation sets quantitative process improve-
ment objectives and uses them to manage process improvement.

These levels are incremental: an organisation at level 3 satisfies the goals
of both levels 2 and 3 (level 1 comes for free and has no goals).

4.5.2 Structure of CMMI Models

Figure 4.3 shows that each maturity level has a number of process areas, for
example ‘product integration’. A process area is related to a set of goals, like
‘ensure interface compatibility’. When an organisation satisfies all goals of a
process area, it is considered to have made significant process improvement
in that area. For each goal there are practices that should be performed to
satisfy the goal. ‘Review interface descriptions for completeness’ is a practice
that helps ensure interface compatibility.

The CMMI-SE/SW has 22 process areas in the following four categories:

1. Process management deals with cross-project activities such as planning,
deploying and improving processes.

2. Project management covers project-related activities, e.g. planning and
monitoring projects.

3. Engineering is concerned with development and maintenance activities of
both software and systems engineering. Examples are requirements man-
agement and verification.

4. Support covers supporting activities such as configuration management,
and measurement and analysis activities.

Table 4.1 shows the process areas for CMMI-SE/SW by category and ma-
turity level. More detailed information on the CMMI models and related prod-
ucts, such as the SCAMPI appraisal method, is available from the SEI [39].

Maturity levels
(1..5)

Practices

GoalsMaturity levels
(1..5) Goals

Process
areas

Practices

Fig. 4.3. Elements of CMMI models

4.6 Summary 57

Table 4.1. Process area categories and maturity levels

Category: Process Areas per maturity level:
Level 1

Level 2 - Managed
Level 3 - Defined

Level 4 - Quantitatively Managed
Level 5 - Optimising

Process
Management

Organisational Process Focus
Organisational Process Definition
Organisational Training

Organisational Process Performance
Organisational Innovation and
Deployment

Project
Management

Project Planning
Project Monitoring and Control
Supplier Agreement Management

Risk Management
Integrated Project Management

Quantitative Project Management
Engineering Requirements Management

Requirements Development
Technical Solution
Product Integration
Verification
Validation

Support Configuration Management
Process and Product Quality Assurance
Measurement and Analysis

Decision Analysis and Resolution
Causal Analysis and Resolution

4.6 Summary

The two main life-cycles of software product line engineering are domain en-
gineering, in which the common assets are developed, and application engi-
neering, where the common assets are used to create products.

Both domain and application engineering have sub-processes for require-
ments engineering, design, realisation and testing. These pairs of sub-processes
are strongly connected, exchanging assets and feedbacks.

The repeating challenge in each of these processes is how to deal with
variability. In domain engineering, the right scope of variability must be sup-
ported in the right way. In application engineering, the right choices must be
made to bind the variability.

58 4 Process

The CMMI is a framework of capability maturity models that can help
organisations to improve and assess their processes. The CMMI can be ex-
tended to the needs of unsupported disciplines by adding amplifications to
its process areas. In the next chapter, we will show how to do that for the
software product line engineering discipline.

5

Organisation

The organisation provides the actual mapping of activities, roles and respon-
sibilities to people and organisational structures. Reflecting the processes, the
organisation has structures and responsibilities for domain and application
engineering and for collaboration and co-ordination roles. Persons and struc-
tural units may play more than one role, and roles may be performed by more
than one person or organisational unit.

This chapter discusses the organisational aspects of software product line
engineering. We first discuss the importance of setting up a good organisation
to achieve success with product line engineering. In Sect. 5.2, we describe the
product line specific roles and responsibilities that the organisation has to deal
with. Next, we discuss several ways how these roles can be accommodated in
an organisational structure. Sect. 5.4 describes the consequences of geographi-
cally distributed organisations. An important aspect of any organisation is the
way people collaborate together, and we discuss several collaboration schemes
useful for software product line engineering in Sect. 5.5. The chapter ends
with a summary.

5.1 Motivation

The organisation executes software product line engineering. Activities and
roles in the development process are assigned to organisational units and to
people in these units. The precise mapping of the activities and roles in the
organisation is important for the following reasons:

1. It determines the amount to which people work together. People in the
same organisational unit are more inclined to work together than those
that are distributed over several units.

2. It determines accountability and funding. This goes via the hierarchical
structure of the organisation.

3. It determines the decision hierarchy.

60 5 Organisation

The structure of the organisation plays a predominant role in structuring
the practice of people and what they need to communicate about. The tasks
people have to work on, the problems they have to tackle, etc. are strongly
influencing the mindset of people as they will determine whether considering
product line issues are also the best solution for the individual. As a con-
sequence, the structure of the organisation has a strong impact on whether
people will be able to see the product line. If product line engineering is not
taken into account in structuring the organisation, the structure may work
against it, leading to an efficiency reduction.

The following problems can occur:

1. The same role is distributed over many places, leading to work that is
done at several places in the organisation.

2. Local profit optimisations of a department may be harmful.
3. Decision-making involves too many people, and thus takes too much time.

The severity of these problems depends on the size of the organisation. In
small organisations, persons have several roles that complement each other.
Often people are working close to each other. This enables a clear distribution
of work, few accountability roles and short decision-making times. In larger or-
ganisations, the structure of the organisation and the determination of enough
roles are crucial to get the work done efficiently. Larger and smaller restruc-
turings of the organisation take place frequently. This is usually inspired by
the aim to better balance the different requirements to the organisation, sat-
isfying the demands above. Such reorganisations are not easy. There is often
resistance in the organisation to the adaptations. As a consequence, reorgan-
isation should be planned and executed carefully in order to reduce these
problems.

Experience shows that having the right organisation structure is crucial
for product line engineering. The dominating success factor for product line
development is the mindset of people, i.e. the interpretations people give to
their experiences as well as to their personal motivations and goals.

For software product line engineering, the organisation involves structures
and responsibilities for executing domain and application engineering and
for supporting and co-ordinating roles. This involves the normally available
software development roles within both domain and application engineering.
Domain engineering jobs are for people that are able to develop high-quality
software components, and maintain them afterwards to improve the quality
even more. Application engineering jobs are different. These are for people
that are able to build applications fast, based on the given platform. They
need to know how to use the variability mechanisms to configure systems.

Especially in large companies, activities are often distributed. Specific
groups are responsible for a part of the activities. In particular, we often see a
single domain engineering group and several separate application engineering
groups. Collaboration specialists are needed with good communication skills
that relate between aspects of domain and application engineering. There are

5.2 Roles and Responsibilities 61

many shared responsibilities to facilitate agreements over subjects ranging
from the reference architecture and testing to a common way of communicat-
ing with each other. This involves cross-functional teams. These are groups
of specialists in both domain and application engineering groups. Together
they decide on the introduction or evolution of specific aspects that they
are responsible for. The cross-functional teams form a secondary organisation
structure in addition to the primary structure that is determined by managers
and reporting structures.

The organisation is responsible for the execution of the processes. There
is a tension between product- and process-oriented drives to the organisation.
The product-oriented drive assigns related activities to people that are close
to each other, preferably in the same organisational unit. The process-oriented
drive combines people with same discipline, leading to organisations that have
units not only for architects, development and testing, but also for sales and
strategy. The organisation has to find a good balance for these conflicting
drives.

In a product line organisation, this leads to the placement of domain en-
gineering people close to each other. Keeping disciplines together may result
in different solutions for application and domain engineering processes. Appli-
cation engineering may have separate development units, but it may also be
the case that application engineering is done by the domain disciplines. This
is partly dependent on the relative weight of the two processes. If application
engineering involves much work, it is better to assign to a separate organi-
sation. If domain engineering is dominating, application engineering may be
done as an additional activity in the domain engineering organisation.

5.2 Roles and Responsibilities

In this section we go into the roles and responsibilities required for software
product line engineering. A role combines a set of responsibilities in relation-
ship to other roles. Each role and responsibility can be assigned to one or more
people in the organisation. Typically, we find that in large organisations there
are groups of people that are assigned a single role. In small organisations a
single person may play several roles. In medium-sized organisations we may
have a mix of both, and roles that are assigned to a single employee only.

In Fig. 5.1 the roles of software product line engineering are mapped on
activities. In the following we discuss all the roles and responsibilities.

5.2.1 Product Manager

The role of the product manager in software product line engineering involves
the planning and evolution of the complete range of products, the portfolio
management. This involves planning of present and future products in the
product line, their features and their business value. The business value is

62 5 Organisation

D
o

m
ai

n
E

n
g

in
ee

ri
n

g
A

p
p

li
ca

ti
o

n
E

n
g

in
ee

ri
n

g

Domain
Requirements

Engineer

Domain
Developer

Domain
Tester

Domain
Architect

Application
Requirements

Engineer

Application
Developer

Application
Tester

Application 1 - Artefacts

Architecture Components TestsRequirements

Common assets

Product
Manager

Application N - Artefacts

Application
Architect

Requirements Architecture Components Tests

Fig. 5.1. Roles in software product line engineering (adapted from [106])

important for the business owner. It involves the planning of the costs and
profits of present and future systems on offer. The business owner is also in-
terested in the costs and profits of the present and future variability in the
product line. The features of present and future products are important for
marketing and sales. The planning of systems on the market has to be clear
in terms of the available features. The domain requirements engineer is in-
terested in the evolution of features, their commonality and their variability.
This is necessary to plan the requirements of the platform and features. The
product manager initiates the first step in new application developments. The
relationship with the application requirements engineer involves product def-
initions and the selection of application requirements.

5.2.2 Domain Requirements Engineer

The domain requirements engineer deals with the development and mainte-
nance of all requirements that are relevant to the complete range of prod-
ucts. This involves the development of common and variable requirements,
including an underlying variability model. These requirements are prepared
in agreement with the roadmaps and plans of the product manager. One of
the tasks of the domain requirements engineer is to provide feedback on the
feasibility and cost of features. The actual common and variable requirements

5.2 Roles and Responsibilities 63

and the underlying variability model are the main input to the domain ar-
chitect who has to maintain the product line architecture. The domain tester
needs the same inputs. They are used to provide test cases for domain as-
sets. The application requirements engineer uses the domain requirements for
specialisation to the application at hand. Finally, like for all other domain
engineering roles, the common and variable requirements are provided to the
domain asset manager who performs management on variants and versions.

5.2.3 Domain Architect

The domain architect involves the development and maintenance of the ref-
erence architecture for the complete range of products. In the first place, the
reference architecture is a technical solution for the domain requirements, in-
cluding commonality and variability, and is prepared in collaboration with the
domain requirements engineer. In particular, the domain architect has to pro-
vide feedback on feasibility and cost of features, and the involved variability.
The common and variable parts of the architecture are provided to the domain
asset manager who performs management on variants and versions. The ref-
erence architecture is an important input to the domain developer. It includes
the selection of reusable domain components and interfaces. The commonality
and variability, available in the domain requirements is refined towards the
reference architecture, based on technical possibilities. An important task of
the domain architect is to validate whether the designs of reusable assets ful-
fil the reference architecture. To facilitate configuring, the domain architect
determines configuration mechanisms to be used to build the end products.
The application architect uses the reference architecture, its commonality and
variability and the set of reusable domain assets to derive application archi-
tectures. The domain architect plays a role in the validation of the application
architectures, namely to ensure that they adhere to the domain architecture.

5.2.4 Domain Developer

The role of the domain developer involves the development and maintenance of
reusable components and interfaces for the complete range of products. In ad-
dition, configuration mechanisms must be provided to support the variance of
systems in the product line. This involves further refinements of commonality
and variability to implementation mechanisms. The domain architect deter-
mines the design of these assets, and the domain developer develops them
according to the reference architecture. In addition, the domain developer has
the responsibility to provide feedback on the feasibility of their development.
The domain tester uses the assets to be configured and tested. The applica-
tion developer reuses the domain assets and their configuration mechanisms to
realise applications. The common and variable parts of the design and imple-
mentation are provided to the domain asset manager who manages variants
and versions.

64 5 Organisation

5.2.5 Domain Tester

The role of the domain tester involves the development and maintenance of
reusable test assets for the complete range of products. In addition to the
traditional testing tasks – involving the testing of integrated products – the
domain tester must perform integration and systems tests on domain assets,
and he must prepare common and variable test assets to be used by the
application tester. As a consequence, the domain tester is responsible for the
domain testing strategy that explains what can be tested at domain level and
what has to be tested at application level. The domain testing strategy is also
important for the other roles in domain engineering. This strategy determines
the domain and application testing costs, which is important for the product
manager. In addition, it determines the possibility to test domain assets at
the domain level. Execution of such tests provides important feedback towards
the domain architect and the domain developer. The domain tester has an
important role in the feedback towards all other domain engineering roles
in so far as he provides information on the testability of requirements and
design choices. The common and variable parts of the test assets are provided
to the domain asset manager who performs management on variants and
versions.

5.2.6 Domain Asset Manager

The domain asset manager is responsible for maintaining versions and variants
of all domain assets for the complete range of products. All assets produced by
the domain engineering are placed under version control. In addition, trace-
ability has to be in place to relate the assets of the different development roles.
Towards the application engineering roles the domain asset manager has the
responsibility to maintain valid versions and configurations of domain assets
and the traceability among the assets. Application engineering puts actual
application configurations under version control. This is used for determining
valid configurations.

5.2.7 Application Requirements Engineer

The role of the application requirements engineer involves the development
and maintenance of the requirements for a single product. This encompasses
the selection of variants of reusable requirements for the application at hand,
according to the roadmaps and plans from the responsible product manager.
The application requirements engineer provides feedback to the product man-
ager on the feasibility and cost of the specific feature selection. In cases that
specific domain requirements are lacking, application-specific ones must be de-
veloped and maintained. These requirements can be assigned as being candi-
date domain requirements, but this must be decided together with the domain
requirements engineer. If problems occur with application requirements that

5.2 Roles and Responsibilities 65

can be traced back to domain requirements, these must be reported back to
the domain requirements engineer. The domain asset manager gets the actual
selection of requirements as input for configuration management. Towards the
application architect and the application tester, the application requirements
engineer has the normal responsibility of providing the actual selection of
requirements as input for architecture and testing.

5.2.8 Application Architect

The role of the application architect involves the development and mainte-
nance of the architecture for a single product. This architecture is a spe-
cialisation of the reference architecture. Problem reports on the reference ar-
chitecture are communicated to the domain architect, who is also informed
of the actual set of reusable domain assets that are used and candidate do-
main architecture elements. Towards the application requirements engineer
the application architect has the normal roles of providing the application ar-
chitecture as technical solution for the application requirements, and feedback
on requirements feasibility and costs. Towards the application developer the
application architect provides the application architecture and the configura-
tion of domain components and interfaces and configuration mechanisms to
be reused. This determines the selection of application-specific components
and interfaces to be developed.

5.2.9 Application Developer

The role of the application developer involves the development and main-
tenance of application-specific components and interfaces. This involves the
reuse of domain components and interfaces and their specialisation towards
the application. Problem reports on reusable domain components and in-
terfaces and configuration mechanisms are reported to the domain devel-
oper. Components and interfaces that can be promoted to the domain are
reported. Towards the application architect and the application tester the ap-
plication developer has the normal roles of providing an implementation for
the application at hand, fulfilling the application architecture and ready for
testing.

5.2.10 Application Tester

The role of the application tester involves the testing of single applications.
This implies the use of the domain testing strategy and the reusable domain
test assets provided for by the domain tester. Towards the other application
engineering roles the application tester has the normal roles of performing
application integration and system tests.

66 5 Organisation

5.3 Organisational Structures

The roles and their mutual responsibilities are the basis for determining the
organisational structure. We focus on the situation of large companies, with
groups of people sharing product line roles. In smaller organisations the struc-
ture is less complex. A single person in a small organisation can do similar
work as departments in large organisations. As a consequence, certain lower-
level departments do not exist, or are not made explicit. However, the basic
principles for the choice of the organisation structure are the same for large
and small organisations.

The way that people interact with each other can be captured in com-
munication patterns. Such patterns determine what kinds of mechanisms are
used for which communication and by whom. The communication patterns are
partially determined by the organisational structure, as they influence what
information needs to be communicated to which person. The organisational
structure determines who is concerned with which part (functionality-wise)
and aspect (life-cycle perspective) of the product line. The organisational
structure provides constraints on the overall communication patterns. An or-
ganisation that focuses on product line development needs to have communi-
cation structures that mirror its product line [40].

Organisational structures for product lines arise from the consideration of
roles and responsibilities. We see the following structures1:

• Domain engineering and application engineering each perform a software
development life-cycle. Note that in many cases several application engi-
neering developments happen simultaneously.

• Interactions between domain and application engineering are mainly “func-
tional”, i.e. at requirements, design, realisation or test level.

• The tester has interactions with most other phases in the same develop-
ment.

• Domain asset manager is a specific role. It interacts with most of the
domain engineering roles and with some of the application engineering
roles as well.

• The product manager has a special role, in which he provides the input
for domain engineering, and is the initiator of application engineering.

Based on these observations, the structure of organisations is mainly influ-
enced by domain engineering, application engineering and their interaction.
Product management, testing and asset management lead to an additional
structure.

We identify three basic structures: product-oriented, process-oriented and
matrix organisations. We discuss these forms in the following sections. More-
over, adaptations of these structures for involving testers, asset managers, and
product managers are discussed from Sect. 5.3.4 onwards.
1 An overview of different organisational structures that are used in the context of

product line engineering is given in [26]

5.3 Organisational Structures 67

5.3.1 Product-Oriented Organisation

We can take the separation between domain and application engineering
units as a guiding principle. Each such unit has a sub-structure according
to the different development phases: requirements, design and realisation.
We call this the product-oriented organisation [94]. The organisation is dis-
tributed over domain and application engineering units. This is the most com-
mon way to structure the organisation for software product line engineering
(Fig. 5.2).

Often, there is a single unit responsible for domain engineering, and several
units for the development of distinct applications. But if domain engineering
grows in scope, it may become too big for a single unit. In that case, domain
engineering may be split over several units, each taking care of a part of the
reusable assets.

The advantage of separate domain and application engineering units is
that it clearly distributes the main responsibilities and accountabilities. The
domain engineering unit is responsible for the delivery of a platform consisting
of high-quality reusable assets. The application engineering units are respon-
sible for obtaining income for the company by serving a part of the market.
Closely related software engineering activities are in the same unit, which
improves the communication about these developments.

Domain
Engineering

Domain
Requirements

Engineer

Domain
Developer

Domain
Architect

Application 1
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application2
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Applicationn
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Fig. 5.2. Product-oriented organisation

68 5 Organisation

Two main challenges exist for this kind of organisation:

1. Funding of the domain engineering unit.
2. Functional interaction between developers of different units.

We discuss both challenges separately, and present ways of dealing with them.

Funding the Domain Engineering Unit

The application engineering organisations generate income from the products
they sell. However, the domain engineering unit has internal customers only:
the application engineering organisations. Payment has to come from these
units. This means that the domain engineering unit is seen as an internal
provider by the application engineering organisations. The drawbacks of tak-
ing this customer role too far are

• The budget of the domain engineering unit is under pressure, as application
engineering organisations demand more value at lower prices.

• Application engineering organisations may (threaten to) seek to use an
external provider instead.2

A shortage of domain engineering resources can make it impossible to
develop a high-quality platform. In order to deal with the second threat, the
domain engineering organisation may be seduced to focus its resources on a
few specific applications in an attempt to keep them on board. Ignoring the
needs of the product line as a whole, this tactic may have serious repercussions
on future return on investment.

Both cases have severe business consequences for the domain engineering
unit, disabling it to do its work properly, leading to low-quality domain assets,
and endangering the long-term profit of the whole organisation. A good busi-
ness plan, supported by higher management, is necessary to provide enough
and stable income for the domain engineering unit.

Functional Interaction Between Developers of Different Units

Each unit aims to maximise its profit. The communication with people in
other units is easily considered overhead, which should be avoided as much as
possible. This holds for both domain and application engineering units. As a
consequence, the necessary communication between requirements specialists,
architects and developers does not take place, or it is not enough. This reduces
the added value of the domain engineering unit that as a consequence may

2 This is especially true at the earlier phase of deploying a software product line,
when investments are painfully real while the returned value is still a promise. In
a mature, successful product line, application engineering organisations will not
be able to find any external platform that is so well suited to their needs for the
price they pay as the platform

5.3 Organisational Structures 69

build the wrong assets for their customers. This problem can be solved by
the introduction of a secondary structure, according to the functional areas,
see the dashed areas in Fig. 5.2. This secondary structure is meant to ini-
tiate meetings over unit borders. The functional teams have a responsibility
for improving the communication along the functional axis. Such a secondary
structure only succeeds if organisation has the right culture. Higher manage-
ment commitment is crucial to make this happen. The “overhead time” has
to be accepted as being an important part of normal work.

5.3.2 Process-Oriented Organisation

Another way of structuring the organisation is by taking the functional hier-
archy prime (Fig. 5.3). In this way, the functional interaction within software
product line engineering is facilitated. Organisations like this need to ensure
communication and co-ordination between the different development phases
to get the right products out in time. External guidance, e.g. by the business
owner, is needed. An advantage of this kind of organisation is that people can
be allocated flexibly to the different developments upon need, in particular
between domain and application engineering. As the same people are charged
with developing similar functionality for different products, this leads to two
important effects:

Requirements
Engineering

Design

Application
Requirements

Engineer

Realisation

Application
Requirements

Engineer

Application
Architect

Domain
Requirements

Engineer

Application
Requirements

Engineer

Application
Architect

Domain
Architect

Domain
Developer

Application
Requirements

Engineer

Application
Developer

Application
Developer

Requirements
Engineering

Design

Application
Requirements

Engineer

Realisation

Application
Requirements

Engineer

Application
Architect

Domain
Requirements

Engineer

Application
Requirements

Engineer

Application
Architect

Domain
Architect

Domain
Developer

Application
Requirements

Engineer

Application
Developer

Application
Developer

Fig. 5.3. Process-oriented organisation

70 5 Organisation

1. It becomes easier to ensure the integrity of the architecture as the same
person responsible for a part of it also makes changes to it.

2. People experience a personal benefit in their work by focusing on reusabil-
ity aspects.

The advantages of this organisational mode on the mindset are clear: it
becomes the personal benefit of the developer to focus on reuse as he will
benefit again from any preparations for reuse. Many developers are involved
in several products and in domain assets. As a consequence, it is less of an
issue to get domain activities funded in this kind of organisations: it is a
normal part of the daily work.

This organisation has as the drawback that the different phases of engi-
neering are not close to each other, and thus communication is more difficult.
A more severe disadvantage is that conflicts have to be escalated high in
the hierarchy to be solved. Accountability for the production of the right
applications and domain assets is not assigned clearly. In many cases, this
can be solved by a secondary structure that deals with the development of
separate applications. Domain engineering is distributed over the organisa-
tion, and appears only in the secondary structure that is depicted by the
dashed regions in Fig. 5.3. This is similar to the product-oriented situation.
Only the relative emphasis between the product and the functional axis is
shifted.

We see this structure more often in small organisations than in large ones.
In small organisations the communication problem is less of an issue.

5.3.3 Matrix Organisation

In order to compromise between both the functional and the product demands,
certain organisations have a matrix structure (Fig. 5.4). Each developer has
a product and a functional responsibility towards different managers in the
two dimensions of the matrix: product-wise and functionally. This can be a
good basis for software product line engineering, since it institutionalises the
virtual structure. However, in this situation the management structure can
be very complex and problems are not always solved in the right way. Care
should be taken that the functional hierarchy executes the necessary software
product line work.

5.3.4 Testing

Because it relates to all other engineering activities, testing has a special role
in the organisation. In principle, it can be treated like other engineering ac-
tivities, and placed similarly in the organisation. Thus, in a product-oriented
organisation, testing is distributed over the domain and application develop-
ment organisation, with an emphasis to test the own development. The intense

5.3 Organisational Structures 71

Domain
Engineering

Domain
Requirements

Engineer

Domain
Developer

Domain
Architect

Application -1
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -2
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -n
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

R
eq

u
ir

em
en

ts
E

n
g

in
ee

ri
n

g
D

es
ig

n
R

ea
lis

at
io

n

Fig. 5.4. Matrix organisation

collaborations with the own development can be managed within the unit it-
self. Active management is needed to co-ordination testing across the product
line. In a process-oriented organisation, testing will get its own department.
This eases the reuse of test assets, and planning of product line testing. In this
case, collaboration with the other developments has to be managed carefully.
It is easy to communicate products to be tested, and problem reports. It is
more difficult to have early communication on testability and test planning.
In a matrix organisation, testing may get an additional testing row in the
matrix.

Certain organisations choose a hybrid approach with regard to testing.
The engineering is organised according to domain and application engineer-
ing units. The testing department is a separate functional unit (Fig. 5.5). The
main reason for such an organisation is the fact that testing is a final quality
check before the products go to the clients. Testing is seen as a specialised
discipline that best can be managed within a single unit. In this case, the
testing department takes any product to be tested as input. These may not
only be the applications, but it can also be the platform. The main advan-
tage of this set-up is the internal co-operation between domain and applica-
tion testing, and the planning of test asset reuse. The disadvantage is that
this situation may lead to a very late involvement of testing in development

72 5 Organisation

Domain
Requirements

Engineer

Domain
Developer

Domain
Architect

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application
Requirements

Engineer

Application
Developer

Application
Architect

Domain
Engineering

Application -1
Engineering

Application -2
Engineering

Application -n
Engineering

T
es

ti
n

g
T

es
ti

n
g

Domain
Tester

Application
Tester

Application
Tester

Application
Tester

Fig. 5.5. Functional testing unit

cycles. The involvement will start only as soon as the first integration tests
are performed. The problem reports are the only feedback expected from the
department. As a consequence, testing may take too much time, and reuse of
test assets may be very low, since it may not be clear in time what the reuse
in the product line is at all. However, if the testing department is involved in
the complete software development life-cycle, these problems can be reduced.
The already-mentioned disciplinary interrelationship among testers severely
eases the reuse of test assets within the development.

5.3.5 Asset Management

Asset management mainly relates to domain engineering. It has to interact
with all activities within domain engineering. It manages the versions and
variants of the assets that are created by domain engineering. Application
engineering only interacts with asset management through the retrieval of
reusable domain assets. As a consequence, asset management is mainly con-
sidered as a part of domain engineering.

5.3 Organisational Structures 73

Domain
Engineering

Domain
Requirements

Engineer

Domain
Developer

Domain
Architect

Application -1
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -2
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -n
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

R
eq

u
ir

em
en

ts
E

n
g

in
ee

ri
n

g
D

es
ig

n
R

ea
lis

at
io

n

Asset
Manager

Fig. 5.6. Asset management in the domain

In product-oriented and matrix organisations, asset management can be
added as an additional discipline in the domain engineering unit (Fig. 5.6).
Communication between asset management and domain engineering is easy in
this way. Application engineering units have to comply with the environment
set up by asset management and can access the reusable assets they need
(Fig. 5.7).

Certain organisations have a separate department that is responsible for
the software engineering environment; this often involves asset management.
This leads to a uniformity, and eases communications over unit borders. Since
managing the environment is a special discipline in itself, this can be a good
choice. A disadvantage of this situation occurs when the software development
environment department optimises the tool support in such a way that the
other developments do not get the best tools they need. Sub-optimal choices
can be made because

• All tools must be acquired from a prescribed vendor.
• Ignorance of new tools prohibits progress.

74 5 Organisation

Domain
Engineering

Domain
Requirements

Engineer

Domain
Developer

Domain
Architect

Application -1
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -n
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

R
eq

u
ir

em
en

ts
E

n
g

in
ee

ri
n

g
D

es
ig

n
R

ea
lis

at
io

n
Development
Environment

Asset
Manager

Fig. 5.7. Functional asset management

• Unawareness of special requirements for software product line engineering
development, such as
– reuse over department borders
– long life-cycles of assets
– management of other assets than documents and code
– communication needs over department borders
– separation between versions and variants

5.3.6 Product Management

Product management strongly interacts with domain engineering, since it de-
termines what is common and what is variable in the product line. Therefore,
it is often placed in the domain engineering unit (Fig. 5.8). However, applica-
tion engineering is initiated by the roadmap of product management, and thus
there is interaction between product management and application engineer-
ing. This has to be explicitly managed for application engineering to provide
the needed applications. Another disadvantage is that domain engineering is
far from the customer. Application engineering units deliver products and are
much closer to the customer. As a consequence of this, product management

5.3 Organisational Structures 75

Domain
Engineering

Domain
Requirements

Engineer

Domain
Developer

Domain
Architect

Application -1
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -2
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -n
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

R
eq

u
ir

em
en

ts
E

n
g

in
ee

ri
n

g
D

es
ig

n
R

ea
lis

at
io

n

Product
Manager

Fig. 5.8. Product management in the domain

may give the wrong priorities to features and products, and the market will
not be served well.

To deal with this situation, product management can be placed closer
to application engineering. Often it is distributed over several application
engineering units. Application product management mainly plans a range
of applications, and there is no global responsibility for software prod-
uct line product management. By adding a new role of domain product
manager this responsibility can be served (Fig. 5.9). The domain prod-
uct manager has the responsibility of the planning of domain assets. Com-
munication with the application product managers is needed to be able
to set the priorities right and to determine what is common and what is
variable.

Note that in a process-oriented organisation this problem does not occur.
Product management is a separate discipline that gets its own unit that plans
all developments of the other units. Again, the communication has to be
managed well, but at least product management has a clear position in such
an organisation.

76 5 Organisation

P
ro

d
u

ct
M

an
ag

em
en

t
Domain

Engineering

Domain
Requirements

Engineer

Domain
Developer

Domain
Architect

Application -1
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -2
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

Application -n
Engineering

Application
Requirements

Engineer

Application
Developer

Application
Architect

R
eq

u
ir

em
en

ts
E

n
g

in
ee

ri
n

g
D

es
ig

n
R

ea
lis

at
io

n

Domain
Product
Manager

Application
Product
Manager

Application
Product
Manager

Application
Product
Manager

Fig. 5.9. Functional product management

5.4 Geographical Distribution

Many of the organisations that have embraced software product line engi-
neering are large and complex. Their software development is distributed over
different departments that are located at different sites and even in different
time zones. They involve other companies that are specialised in doing a part
of the work, e.g. through outsourcing. This situation leads to a demand for a
product line organisation structure that can deal with the difficult communi-
cation originating from this distribution. In any case, communication has to
be managed very explicitly, otherwise it will not happen. People in different
locations often do not know each other, and have different communication
cultures.

The easiest solution is to have complete parts of the matrix involving con-
nected process and product responsibilities together. Then the communication
to other sites can be treated as special cases of communication with other de-
partments. In many cases, however, this solution is simply not an option.
For instance, different departments have responsibilities for the same piece of

5.5 Collaboration Schemes 77

work because of historical reasons, and they have to communicate very of-
ten. Moving the responsibility to a single site may lead to loss of knowledge
and to friction with the personnel. There is a danger that some people with
specialised knowledge are not willing to move. Another risk is that certain
departments do not trust assets developed by departments at other sites, the
infamous not-invented-here-syndrome. A solution for this situation is to grad-
ually move towards a structure that improves the mapping of the elements of
the organisation on the different sites. In the mean time, extensive commu-
nication is necessary, both through face-to-face and virtual meetings such as
telephone conferences and video meetings.

5.5 Collaboration Schemes

Collaboration schemes are another part of the organisation concerns. Collab-
oration is the glue among the people working in the organisation. Dependent
on the kind of collaboration scheme used in the organisation, it is possible to
work together on a single software product line. Specific types of information
must be communicated with specific people depending on their needs and in-
terests. These communication patterns are partially determined by the overall
work organisation, as they influence what information must be communicated
to which person. Several collaboration schemes support such communication.

Software product line development requires a large group of people in the
organisation working together. To do this well, the right collaboration schemes
are needed. Collaboration schemes support the way people are involved with
and convinced of the need for product line engineering. They can make the
benefits and the organisation of the product line clear. They make it easier to
find options to improve reuse and spread good engineering practices [124].

Collaboration can take on several forms, and many mechanisms can be
used (Table 5.1).

People use different collaboration mechanisms depending on their infor-
mation needs, but to have a good collaboration, all forms are necessary. If
one or more of the forms is lacking, it may be a sign that collaboration is not
optimal.

Collaboration can be done in the vertical direction, involving people with
management, and horizontally, involving people in the same or different de-
partments. The vertical axis is important to keep people informed about the
product line and its evolution. The horizontal axis is necessary to enable the
different roles to work together well. Especially when there is a secondary
structure, people need to collaborate over department borders using the dif-
ferent mechanisms mentioned above. In many cases, special roles are recog-
nised for people in the organisation to facilitate collaboration. This may be
a chairperson of certain meetings or people responsible for the collaboration
platform.

78 5 Organisation

Table 5.1. Collaboration forms and mechanisms

Form Example mechanisms

Meetings Real, virtual Several people together discussing
the same subjects

Bilateral con-
versations

Face to face, by telephone,
via collaboration platforms

Two people work together to deal
with a subject that is important for
both

Asynchronous
collaboration

Document exchange via
e-mail, wiki, or normal mail

Several people inform each other
and adapt information actively

Workflow Workflow systems, manually People get the documents that they
need to work on and pass their
results on to others (semi-)
automatically

5.6 Summary

The right distribution of roles and responsibilities is an important aspect of the
organisation of software product line engineering. Extensive communication
is needed both in the process-oriented direction and in the product-oriented
direction. Although a matrix organisation copes with this situation, the man-
agement of such an organisation is often not easy. We more often see that the
communication in the product dimension is in many cases more important
that in the process direction. This leads to a product-oriented organisation
with a secondary structure in the process dimension. In cases where product
line engineering is set up in such a way that application engineering takes
much less work than domain engineering, the process-oriented organisation
may be prime.

In any case, the communication must be managed very explicitly. Someone
must be responsible that this occurs over department borders, and even over
the different sites, if necessary.

In the case of small organisations, the structure does not matter so much.
A person takes the responsibility of one or more departments, as described in
this chapter. This means that (part of) the communication can be removed,
which simplifies the structure considerably.

6

The Family Evaluation Framework

The Family Evaluation Framework (FEF) is a consolidated result of six years
of European co-operation projects with industry and academia. These are the
ESAPS, CAFÉ and FAMILIES projects.1 Companies within these projects
mainly work on a large variety of embedded systems including medical imag-
ing, mobile phones, flight control software, utility control, supervision and
management, financial services and car electronics. During these projects, the
terminology in use was “software product family” or “system family” instead
of “software product line”. This terminology is also reflected in the name of
the final project in the series and in the name of the FEF.

This chapter gives an overview of the FEF. Section 6.1 describes the pur-
pose of the framework. Next, its basic structure is described (6.2). The FEF
is based on the four concerns of the BAPO model, leading to four dimen-
sions in the evaluation framework. Sects. 6.3–6.6 describe these dimensions
in detail. Then, the application of the FEF is discussed, including its use in
complex organisations. As an illustration, we present the evaluation of a fic-
titious company as an example. In Sect. 6.8, we describe the FEF’s relation
to other evaluation approaches and end with a summary.

6.1 Motivation

The purpose of the FEF is to evaluate the performance in software product line
engineering of organisations, including departments, business units, divisions
and even complete companies. It does not evaluate single system software
engineering practices but focuses on the aspects that are specific to software
product line engineering. In particular, it emphasises the main aspects of
product line engineering:

• The execution of both domain and application engineering.
1 For more information about the collaborating partners and the results, see the

publications [143, 144, 106] and the websites of the projects [49, 35, 51]

80 6 The Family Evaluation Framework

• The comprehensive management of variability.

There are diverse reasons for executing an FEF evaluation. For instance,
a company may use the FEF to assess how well a certain department is doing
software product line engineering to prove that it is on the right track. Al-
ternatively, it may use the FEF as a benchmark tool to compare with other
companies’ software product line engineering capabilities. A third reason is
to use the FEF as a decision tool to find the best way to improve software
product line engineering within one or more departments.

6.2 Structure

The BAPO model covers the main concerns of software engineering. These
concerns are used as the four dimensions of the Family Evaluation Framework
(cf. Fig. 6.1).

Each dimension is divided into five levels and has three to four evaluation
aspects assigned to it.

C
ol

la
bo

ra
tio

n
ProcessBusiness Architecture Organisation

level 1

level 2

level 3

level 4

level 5

dimension

aspects

Project
based

Aware

Managed

Measured

Optimising

Independent
development

Standardised
infrastructure

Software
platform

Variant
products

Configuring

Initial

Managed

Defined

Quantitatively
managed

Optimising

Project

Reuse

Weakly
connected

Synchronised

Domain
oriented

C
om

m
er

ci
al

Fi
na

nc
ia

l
V

is
io

n
S

tra
te

gi
c

R
eu

se
R

ef
er

en
ce

ar
ch

ite
ct

ur
e

V
ar

ia
bi

lit
y

D
om

ai
n

A
pp

lic
at

io
n

R
ol

es
&

re
sp

on
si

bi
lit

ie
s

S
tru

ct
ur

e
C

ol
la

bo
ra

tio
n

C
ol

la
bo

ra
tio

n

Fig. 6.1. The Family Evaluation Framework (FEF)

6.2 Structure 81

The levels reflect the way in which organisations deal with each of the
concerns of product line engineering. The levels are incremental; to reach a
certain level, an organisation must satisfy the requirements of all lower levels,
too. The FEF measures an organisation’s level in each dimension, but it does
not prescribe ways to reach a certain level.

The organisation is evaluated for three to four aspects per dimension:

• Business measures the business involvement in software product line en-
gineering and variability management. It deals with the business relation-
ships between domain and application engineering and the costs, profits,
market value and planning of variability.

• Architecture deals with the relationship between domain and application
architectures and how they are related via variability. Important architec-
ture concerns deal with the right variation mechanisms and how the refer-
ence architecture influences the application architectures and vice versa.

• Process measures which software product line processes are used and what
is their maturity. The processes can be subdivided into domain, applica-
tion, and collaboration and co-ordination processes. Each of them can be
evaluated using a maturity model such as CMMI.

• Organisation measures the effectiveness of the distribution of domain and
application engineering over the organisation. The organisation has struc-
tures and responsibilities for domain and application engineering and for
collaboration and co-ordination roles. In particular, the organisation dis-
tributes responsibilities between platform, applications, collaboration and
co-ordination and determines the relative importance of them.

The result of an FEF evaluation is an evaluation profile consisting of four
values, one for each BAPO dimension. The framework allows different re-
sults in the different dimensions, as may be the case in companies where one
BAPO concern receives more attention than another. This means that an
organisation has a separate, independent evaluation level for each of them.
Having separate dimensions guarantees attention – and potentially different
ratings – for each of them, but in practice, the BAPO concerns themselves
are not completely independent. The relation between business, architecture,
process and organisation becomes obvious as soon as one studies the effects
of changes. Changes in one dimension will virtually always have consequences
for the other dimensions as well. In the end, all BAPO concerns have to be
taken into account in order to improve. A low score in one dimension may
hamper the achievement of reaching a high score in another dimension.2 Ac-
tions to improve the evaluation result for one concern may reduce attention
for the other concerns, leading to lower evaluation results for some of these.

2 This may mean that we may get a high score for the architecture dimension and
low for the others. Such scores may be defendable in certain situation. However,
in many cases, this is a sign to have less attention to architecture and more to
business, organisation and process

82 6 The Family Evaluation Framework

Although evaluation and improvements can be addressed separately in each
dimension, the overall picture should be kept in mind while doing so.

There are many ways to implement software product line engineering in
the organisation. Similar to the philosophy of the CMMI, the FEF evaluation
does not deal with specific ways to perform a certain activity, modelling,
structuring, responsibility or task.3

6.3 Business Dimension

The business dimension deals in general with profits, costs, strategy and plan-
ning. Business management has several techniques to influence the develop-
ment process and improve marketing and sales of the products. The FEF
deals with those business issues that are unique to software product line or-
ganisations, involving investment decisions, measuring the costs and profits
of product line engineering and funding of domain engineering. The business
dimension also deals with managing variability. That means measuring costs
and profits generated by variability in the product line engineering and us-
ing this information to plan prices and marketing strategies for the product
portfolio.4

The following aspects play a role in the business dimension of software
product line engineering (Fig. 6.2):

• Commercial : how is marketing, sales and product management involved
in and influenced by the software product line?

• Financial : how does software product line engineering influence budget
and investment decisions?

• Vision and business objectives : how well does the organisation aim for a
future involving software product line engineering?

• Strategic planning: how well does the organisation plan long-term product
line development and its business aspects?

In the following sections, each of the business dimension’s levels is discussed
in detail.

6.3.1 Level 1: Project-Based

This is the basic level. The business is arranged for project-based single sys-
tem engineering. Domain engineering results and variability – if they exist at

3 The ESAPS, CAFÉ and FAMILIES projects have delivered a large amount of such
methods, tools and techniques [49, 35, 51]. These are best practices and can be
applied in software product line engineering. They provide a good insight of what
is necessary in the different BAPO dimensions, but none of them is obligatory

4 There exist a few initial economic models for measuring the success of software
product line engineering [58, 125]

6.3 Business Dimension 83

C
ol

la
bo

ra
tio

n

ProcessBusiness Architecture Organisation

level 1

level 2

level 3

level 4

level 5

dimension

aspects

Project
based

Aware

Managed

Measured

Optimising

Independent
development

Standardised
infrastructure

Software
platform

Variant
products

Configuring

Initial

Managed

Defined

Quantitatively
managed

Optimising

Project

Reuse

Weakly
connected

Synchronised

Domain
oriented

C
om

m
er

ci
al

Fi
na

nc
ia

l
V

is
io

n
S

tra
te

gi
c

R
eu

se
R

ef
er

en
ce

ar
ch

ite
ct

ur
e

V
ar

ia
bi

lit
y

D
om

ai
n

A
pp

lic
at

io
n

R
ol

es
&

re
sp

on
si

bi
lit

ie
s

S
tru

ct
ur

e
C

ol
la

bo
ra

tio
n

Fig. 6.2. Business dimension

all – are not visible at the business level. None of the aspects covers software
product line engineering. With regard to the business concerns, we see the
following typical situation:

• Commercial : there is no, or little, involvement in software product line
engineering by the business. Systems are planned, sold and marketed on
a single system basis.

• Financial : there are no specific budgets for domain engineering. Instead,
budgeting is done on a per system basis.

• Vision and business objectives : they do not mention the existence of soft-
ware product line engineering.

• Strategic planning: the business planning does not consider relations
among systems.

6.3.2 Level 2: Aware

At this level, the business is aware of the benefits of software product line
engineering for the company. It provides some context in which software prod-
uct line engineering can be done. However, a clear management of software

84 6 The Family Evaluation Framework

product line engineering is not available. This level shows the following typical
situation:

• Commercial : the sales force, marketing and product management are
aware of the opportunities of software product line engineering. It is ex-
pected that managed variability will lead to a greater variety in sold sys-
tems and that production costs will decrease. The mere fact of supporting
more variants is seen as an additional benefit for the customer. However,
there is no clear strategy available for using the software product line
engineering in marketing, sales and product planning.

• Financial : the business invests in domain engineering activities to sup-
port a repository for reusable assets. There are budgeting consequences to
encourage the use of the domain engineering results.

• Vision and business objectives : there is commitment from top management
to do software product line engineering. However, there is no clear vision
on its use for the company.

• Strategic planning: the planning is still committed to single system devel-
opment. However, the results of domain engineering are taken into account
in an opportunistic way in product roadmaps.

6.3.3 Level 3: Managed

At this level, software product line engineering is part of the business strat-
egy. Management takes control of the execution of corresponding activities. It
recognises the benefits and drawbacks of software product lines.

• Commercial : the expected return on investment drives the marketing, sales
and development of software product line products. Marketing addresses
the user values of having a large amount of variability for low costs.

• Financial : software product line engineering is influencing the investment
decisions. There is a well-defined budget for domain and for application
engineering activities. There is an institutionalised mechanism to gener-
ate budget for domain engineering by the sales of systems produced by
application engineering. There is an awareness of the costs and profits of
variability and how that generates a return on investment.

• Vision and business objectives : the top management strongly supports
software product line engineering. The organisation’s vision and business
objectives incorporate in a qualitative way the software product line, its
value for the organisation and its evolution. The software product line
engineering strategy is visible to the organisation.

• Strategic planning: there are separate plans and roadmaps for domain and
application engineering. The plans are related, and commonalities in ap-
plications provide the basis of the domain engineering plan.

6.4 Architecture Dimension 85

6.3.4 Level 4: Measured

At this level, the business measures the effects of software product line engi-
neering to improve the strategy. A typical situation:

• Commercial : the costs, profits and return on investment of software
product line products and managed variability are measured. The results
influence the marketing and sales strategy. In addition, the product man-
agement strategy is guided by measured return on investment.

• Financial : the costs and savings of reuse and variability and software prod-
uct line engineering are measured and reflected in the budgets.

• Vision and business objectives : the top management knows the effects
of software product line development on their organisation. The business
objectives incorporate in a quantitative way the software product line, its
value for the organisation and its evolution. The advantages of software
product line engineering appear in the vision and business objectives. The
drawbacks are recognised, and measures are planned to diminish their
effects. The software product line engineering strategy is visible outside
the organisation, for example to clients or investors.

• Strategic planning: the plans and roadmaps are co-ordinated to get the
best business value out of software product line engineering.

6.3.5 Level 5: Optimised

At this level, the business strategy involves optimisation of software product
line engineering.

• Commercial : marketing and sales know the costs, profits and return on
investment of software product line engineering and use this knowledge to
improve the business strategy.

• Financial : there is an accurate integration of financial information with
the forecast of sales, costs and savings of software product line products.

• Vision and business objectives : they are influenced by software product
line development upon a well-understood basis.

• Strategic planning: the plans and roadmaps are used strategically to get
the best business value out of software product line engineering.

6.4 Architecture Dimension

The architecture dimension deals with the technical means to build the soft-
ware. It determines the technical realisation of the products in the software
product line. The architecture is split over domain and application architec-
tures, which are related via variability. The evaluation in the architecture

86 6 The Family Evaluation Framework

dimension mainly deals with the relationship between the reference archi-
tecture and the application architectures. It takes into account how vari-
ability is modelled in the reference architecture. The following aspects play
a role in the architecture dimension of software product line engineering5

(Fig. 6.3):

• Asset reuse level : the extent of the use of domain assets in products.
• Reference architecture: the extent to which the reference architecture de-

termines the application architectures.
• Variability management : the explicit use of variation points and supporting

mechanisms.

In the following sections, each of the architecture dimension’s levels is
discussed in detail.

V
is

io
n

C
om

m
er

ci
al

C
ol

la
bo

ra
tio

n

ProcessBusiness Architecture Organisation

level 1

level 2

level 3

level 4

level 5

dimension

aspects

Project
based

Aware

Managed

Measured

Optimising

Independent
development

Standardised
infrastructure

Software
platform

Variant
products

Configuring

Initial

Managed

Defined

Quantitatively
managed

Optimising

Project

Reuse

Weakly
connected

Synchronised

Domain
oriented

Fi
na

nc
ia

l

S
tra

te
gi

c

R
eu

se
R

ef
er

en
ce

ar
ch

ite
ct

ur
e

V
ar

ia
bi

lit
y

D
om

ai
n

A
pp

lic
at

io
n

R
ol

es
&

re
sp

on
si

bi
lit

ie
s

S
tru

ct
ur

e
C

ol
la

bo
ra

tio
n

Fig. 6.3. Architecture dimension

5 This is an adaptation of a model of software product line architectures presented
in [28]

6.4 Architecture Dimension 87

6.4.1 Level 1: Independent Development

This is the basic level. There are only architectures for single systems. Reuse
is not visible in these architectures. With regard to the architecture concerns,
we see the following typical situation:

• Asset reuse level : there is no or only unsystematic reuse.
• Reference architecture: there is no software product line architecture.
• Variability management : variability is not managed.

6.4.2 Level 2: Standardised Infrastructure

At this level, reuse is focused on third-party infrastructure. Common software
infrastructure (such as middleware) is defined. There is no formal reuse of
domain-specific assets.

• Asset reuse level : there is a common third-party infrastructure defined and
in use. There is only ad hoc reuse, mainly based on the repository of the
third-party products.

• Reference architecture: the software product line architecture is derived
from the third-party infrastructure. It only enforces the use of this infras-
tructure.

• Variability management : only variability offered by the third-party infras-
tructure is somewhat limited. The remainder of the variation is open to
be determined by the application architecture.

6.4.3 Level 3: Software Platform

At this level, domain commonality is captured and implemented in a software
platform. There is a reference architecture available for all applications, mainly
determining the use of the platform. This configurable platform is used for
various products. Nevertheless, there is no variability support for configuring.
A typical situation looks like this:

• Asset reuse level : there is a common platform defined as a collection of
common assets in a domain repository. Reuse is restricted to this platform
and by architectural constraints.

• Reference architecture: it is in use for the applications. It contains rules
and determines the use of the platform. This incorporates the common use
of certain quality solutions as offered by the reference architecture.

• Variability management : the reference architecture determines which con-
figurations of domain assets are allowed within applications. It determines
explicit variation points, where application-specific variants may be bound.

88 6 The Family Evaluation Framework

6.4.4 Level 4: Variant Products

At this level, the domain commonality and variability is captured and a refer-
ence architecture is specified for the complete software product line. Domain
assets include support for deriving products. Variability management is ex-
plicitly addressed in the software product line architecture.

• Asset reuse level : there is systematic and managed reuse based on an asset
repository, with explicit variability in the assets.

• Reference architecture: there is an explicit reference architecture that de-
termines where application architectures may vary. Many quality solutions
are incorporated in the software product line architecture.

• Variability management : the software product line architecture deter-
mines which configurations are allowed for application architectures. The
reference architecture determines variation points and restricts the al-
lowed variants for most of these variation points. It determines rules that
application-specific variants have to obey.

6.4.5 Level 5: Configuring

At this level, the reference architecture is dominant and application architec-
tures divert only marginal from it. Products can be derived automatically,
using scripts, tools and very high level languages. Application development
consists mainly on configuring within the borders of the reference architecture.
As a consequence, automated configuration of products is possible.

• Asset reuse level : there is systematic reuse based on an asset repository,
with explicit variability in the assets and their configuration mechanisms.

• Reference architecture: it determines the application architectures com-
pletely. There is automated configuration support to derive specific appli-
cations. Quality is supported through the managed use of specific variation
points.

• Variability management : it is fully integrated in the architecture. Vari-
ability is described in models or languages that are semantically and
syntactically standardised within the organisation. Variants are derived
automatically.

6.5 Process Dimension

The process dimension deals with the roles, responsibilities and relationships
within a software development organisation. For software product line en-
gineering, distinct processes can be identified for domain, application and
collaborating processes. CMMI can be applied to domain and application

6.5 Process Dimension 89

engineering separately. Because application engineering processes must be co-
ordinated with domain engineering and with other application engineering
processes, additional collaboration processes must be implemented.

The following aspects play a role in the process dimension of software
product line engineering (Fig. 6.4):

• Domain engineering : these processes guide the domain engineering work.
• Application engineering: these processes guide the application engineering

work.
• Collaboration: these processes guide the collaboration activities between

domain and application engineering.

The levels for the process dimension of software product line engineer-
ing are based on the CMMI levels [139] but they contain amplifications, i.e.
specialisations or extensions, for CMMI practices at the same level.

In the following sections, each of the process dimension’s levels is discussed
in detail.

D
om

ai
n

V
is

io
n

C
om

m
er

ci
al

C
ol

la
bo

ra
tio

n

ProcessBusiness Architecture Organisation

level 1

level 2

level 3

level 4

level 5

dimension

aspects

Project
based

Aware

Managed

Measured

Optimising

Independent
development

Standardised
infrastructure

Software
platform

Variant
products

Configuring

Initial

Managed

Defined

Quantitatively
managed

Optimising

Project

Reuse

Weakly
connected

Synchronised

Domain
oriented

Fi
na

nc
ia

l

S
tra

te
gi

c

R
eu

se
R

ef
er

en
ce

ar
ch

ite
ct

ur
e

V
ar

ia
bi

lit
y

A
pp

lic
at

io
n

R
ol

es
&

re
sp

on
si

bi
lit

ie
s

S
tru

ct
ur

e
C

ol
la

bo
ra

tio
n

Fig. 6.4. Process dimension

90 6 The Family Evaluation Framework

6.5.1 Level 1: Initial

This is the basic level. Domain and application engineering and collaboration
processes are performed at CMMI level 1.

• Domain engineering, application engineering and collaboration: if present
at all, performed at CMMI level 1.

6.5.2 Level 2: Managed

At this level, basic software product line project-management is in place.
For software product line engineering, domain and application engineering
projects are synchronised.

• Domain engineering : performed at CMMI level 2. Amplifications are nec-
essary for the following process areas:
– Requirements Management (RM) manage software product line re-

quirements. Maintain traceability between variation points and
variants.

– Project Planning (PP) define variability. Involve application engineer-
ing as stakeholder for reusing the domain assets. Define a policy of
communication and co-operation with application engineering.

– Project Monitoring and Control (PMC) monitor the usage of reusable
assets per application.

– Measurement and Analysis (MA) take global product line view into
account.

– Configuration Management (CM) pay attention to baseline created and
released for reusable assets.

• Application engineering: performed at CMMI level 2. Amplifications are
necessary for the following process areas:
– Requirements Management (RM) is management of application

requirements, both as reused domain requirements and as application-
specific requirements.

– Project Planning (PP) reuse domain assets and bind variability. Anal-
yse the risk of dependency on domain engineering. Involve domain
engineering as a stakeholder for developing reusable domain assets.
Consider the influence of domain engineering on the scope of applica-
tion projects.

– Project Monitoring and Control (PMC) monitor the usage of reusable
assets.

– Measurement and Analysis (MA) measure use of common assets by
application engineering activities.

– Configuration Management’s (CM) reusable assets provide a basis for
the identification of configuration items.

• Collaboration: performed at CMMI level 2. Amplifications are necessary
for the following process areas:

6.5 Process Dimension 91

– Requirements Management (RM) maintain bi-directional traceability
between software product line and application requirements and use it
to identify inconsistencies.

– Project Planning (PP) asset life-cycles live longer than projects. Syn-
chronise between domain and application engineering. Monitor the in-
volvement between domain and application engineering.

– Project Monitoring and Control (PMC) monitor and control the syn-
chronisation points between domain and application engineering.

– Configuration Management (CM) change requests regarding application-
specific variants of reusable asset variants may lead to change requests
on the reusable assets themselves. Synchronise application and domain
configuration management.

6.5.3 Level 3: Defined

At this level, processes are aligned across the organisation, and engineering is
performed in a disciplined way over the organisation. For software product line
engineering, this means there is control over variability and reusable assets,
both in creation and in use.

• Domain engineering : performed at CMMI level 3. Amplifications are nec-
essary for the following process areas:
– Requirements Development (RD) develop requirements for multiple

products in a market segment. Define the scope of the software prod-
uct line. Identify the products to be built. Identify commonality and
variability.

– Technical Solution (TS) variability must be included in operational
concepts and scenarios for the domain. Develop a platform architec-
ture and the relevant common product derivation support must be
defined and implemented. Consider multiple origins and destinations
for interfaces.

– Verification (VE) ensure that application engineering makes the proper
intended use of domain assets.

– Validation (VA) in application engineering is a stakeholder of the do-
main validation process.

– Organisational Process Focus (OPF) and Organisational Process Def-
inition (OPD) include the platform for a given domain, procedures of
use of this platform, methodologies, reusable components and guide-
lines. Consider multiple products in a market segment. Use the scope
of the software product line.

– Organisational Training (OT) add training on products, application
processes and application project groups.

• Application engineering: performed at CMMI level 3. Amplifications are
necessary for the following process areas:

92 6 The Family Evaluation Framework

– Requirements Development (RD) considers a single customer or mar-
ket segment. The software product line’s variability and capabilities
are used in the communication with the customer. Reuse product line
process requirements, bind variability and develop application-specific
requirements.

– Technical Solution (TS) reuse domain assets, bind variability and de-
velop application-specific assets. Specialise the platform architecture
for the application and use the common product derivation support.

– Validation (VA) validate both domain and application work products.
Staff must be especially trained to know what use they may make of the
domain assets. Domain engineering is a stakeholder of the application
validation process.

– Organisational Training (OT) add training on the platform, asset us-
age, domain processes and domain project groups.

• Collaboration: performed at CMMI level 3. Amplifications are necessary
for the following process areas:
– Requirements Development (RD) identify application requirements as

potential software product line requirements.
– Technical Solution (TS) determine selection criteria for and co-ordinate

the inclusion of application assets in the platform. Communicate ex-
isting and planned application and domain assets. Identify applica-
tion assets as potential domain assets. Co-ordinate make, buy or reuse
decisions.

– Product Integration (PI) maintain a roadmap of future products and
product enhancements. Determine the actual transfer protocol of deliv-
erables and the timing of the product transfers. Support the integration
of domain and application assets.

– Verification (VE) and Validation (VA) develop a domain verification
environment, procedures and criteria concurrently and iteratively with
the application verification environment. Communicate verification re-
sults and corrective actions between domain and application engi-
neering. Share a policy of planning between domain and application
engineering.

– Organisational Process Focus (OPF) determine the organisation’s
performance objectives over the whole software product line process.
Synchronise action plans between domain and application engineering.

– Organisational Process Definition (OPD) assign responsibilities that
cover several projects and products.

– Integrated Project Management (IPM) communicate existing and plan-
ned application and domain assets. Identify application assets as
potential domain assets.

– Risk Management (RSKM) ensure that the risk management strat-
egy and risk mitigation plans cover both domain and application
engineering.

6.6 Organisation Dimension 93

– Decision Analysis and Resolution (DAR) ensure that alternative so-
lutions’ evaluations cover aspects from both the applications and the
domain.

6.5.4 Level 4: Quantitatively Managed

At this level, processes are managed and measured within the organisation.
For software product line engineering, this means that there is quantitative
control over variability and reusable assets, both in creation and in use.

• Domain engineering : performed at CMMI level 4. Amplifications are nec-
essary for the following process area:
– Quantitative Project Management (QPM) integrate the related appli-

cation engineering sub-processes in the project statistics.
• Application engineering: performed at CMMI level 4. Amplifications are

necessary for the following process area:
– Quantitative Project Management (QPM) integrate the related domain

engineering sub-processes in the project statistics.
• Collaboration: performed at CMMI level 4. Amplifications are necessary

for the following process area:
– Quantitative Project Management (QPM) measure the dependencies

between domain and application engineering and the behaviour of their
synchronisation activities. Communicate the influences between do-
main and application engineering. Negotiate improvement actions on
performance of bottleneck projects. Co-ordinate stakeholder identifica-
tion over application and domain projects.

6.5.5 Level 5: Optimising

At this level, processes are continuously optimised for their effectiveness for
the organisation. For software product line engineering, this means a combined
improvement of domain and application engineering together.

• Domain engineering, application engineering and collaboration: performed
at CMMI level 5, and software product line processes of level 4 are per-
formed.

6.6 Organisation Dimension

The organisation dimension deals with the actual mapping of roles and re-
sponsibilities to organisational structures. Within software product line engi-
neering, this dimension measures the effectiveness of the distribution of do-
main and application engineering over the organisation. It involves structures
and responsibilities for domain and application engineering separately and for

94 6 The Family Evaluation Framework

D
om

ai
n

V
is

io
n

C
om

m
er

ci
al

C
ol

la
bo

ra
tio

n

ProcessBusiness Architecture Organisation

level 1

level 2

level 3

level 4

level 5

dimension

aspects

Project
based

Aware

Managed

Measured

Optimising

Independent
development

Standardised
infrastructure

Software
platform

Variant
products

Configuring

Initial

Managed

Defined

Quantitatively
managed

Optimising

Project

Reuse

Weakly
connected

Synchronised

Domain
oriented

Fi
na

nc
ia

l

S
tra

te
gi

c

R
eu

se
R

ef
er

en
ce

ar
ch

ite
ct

ur
e

V
ar

ia
bi

lit
y

A
pp

lic
at

io
n

R
ol

es
&

re
sp

on
si

bi
lit

ie
s

S
tru

ct
ur

e
C

ol
la

bo
ra

tio
n

Fig. 6.5. Organisation dimension

supporting and co-ordinating roles. In particular, the responsibilities for do-
main engineering, application engineering and their internal co-ordination are
identified.

The following aspects play a role in the organisation dimension of software
product line engineering6 (Fig. 6.5):

• Roles and responsibilities: how does the organisation manage the dis-
tinct responsibilities and relationships occurring in software product line
engineering – are they undifferentiated or are there specific roles for prod-
uct line engineering?

• Structure: this deals with the organisation structure that puts the roles
and responsibilities into practice. It involves both the primary structure
as shown in the organisation chart and the secondary structure that is
not visible in the organisation chart. This aspect is also relevant to small
organisations, which have usually less structure than large organisations.
People’s tasks will distribute the personnel over virtual departments, some
exist of one or a few persons, and persons may be member of several virtual

6 This is an adaptation of a model on organisational structures in [27]

6.6 Organisation Dimension 95

departments. In small organisations, the structure is partially determined
by roles and responsibilities.

• Collaboration schemes: this involves the co-operation in primary and sec-
ondary organisation structures and the extent of shared values.

In the following sections, each of the organisation dimension’s levels is
discussed in detail.

6.6.1 Level 1: Project

This is the basic level. The organisation is arranged for project-based single
system engineering. With regard to the organisation concerns, we see the
following typical situation:

• Roles and responsibilities: only the application engineering roles, which are
the traditional software engineering roles, are defined.

• Structure: it is organised around project-based single system development.
• Collaboration schemes: the organisation is internally focused, human re-

sources may be shared among projects, but software assets are usually not
shared.

6.6.2 Level 2: Reuse

At this level, application projects drive reuse in an opportunistic way. First,
certain common assets are identified and then refactored to reusable compo-
nents that are shared between projects.

• Roles and responsibilities: there are no explicitly defined domain engi-
neering roles. The application engineering experts collaborate over project
borders to identify and share common assets.

• Structure: it is focused on doing projects. Certain senior resources are
allocated to reusable component identification and development.

• Collaboration schemes: it is based on negotiations and information sharing
among projects.

6.6.3 Level 3: Weakly Connected

At this level, there are one or more separate domain engineering organisations
and multiple application engineering organisations There are simple interac-
tions between them at early and late phases of domain and application engi-
neering life-cycles. In small organisations, the different sub-organisations may
be less visible.

• Roles and responsibilities: there are both domain and application engineer-
ing roles and responsibilities defined. There are responsibilities defined for
separate domain and application engineering organisations.

96 6 The Family Evaluation Framework

• Structure: the domain and application roles are distributed over the organ-
isation. There is a separate domain engineering department. Both domain
and application engineering have mostly project-oriented structures. In
small organisations, there are people that are explicitly responsible for the
development of domain assets and application aspects. Although certain
persons are responsible for both, this is not the normal situation, and
domain and application tasks have separated descriptions.

• Collaboration schemes: it is document-based, mostly in exchanging re-
quirements and shared management of change requests and problem
reports between domain engineering projects and several application en-
gineering projects.

6.6.4 Level 4: Synchronised

At this level, there are multiple interactions between domain engineering
and application engineering, an institutionalised secondary structure for early
problem prevention and co-ordinated planning of domain engineering and ap-
plication engineering.

• Roles and responsibilities: there are co-ordination roles between domain
and application engineering and across domain engineering organisations.
Domain engineering has a major role in software development.

• Structure: there is a secondary structure that incorporates cross-functional
teams. The primary structure follows the major sub-structure of the refer-
ence architecture. Functional domains, which are important for the refer-
ence architecture, determine the secondary structure in the organisation.
In small organisations, there are people that are explicitly responsible for
the development of domain assets and application aspects. Most persons
are also responsible for certain functional domains, extending both over
domain and application engineering. Domain and application tasks have
separated descriptions.

• Collaboration schemes: there is a strong co-operation of domain and ap-
plication engineering projects in cross-functional teams, task force groups,
etc. There are regular meetings of people fulfilling collaboration roles.

6.6.5 Level 5: Domain-Oriented

At this level, the functional domains determine the primary structure for
mainly domain engineering. Application engineering now determines a sec-
ondary structure.

• Roles and responsibilities: the responsibilities of the people in the organisa-
tion are related to the functional domains in the architecture, like in level
1 organisations. However, the most important focus is on domain engineer-
ing. Many people in the organisation have explicit determined application

6.7 Applying the FEF 97

responsibilities in addition. Application engineering roles take only a small
part of the time of most people.

• Structure: it is driven by disciplines in domain engineering. Specific appli-
cation engineering is within the secondary structure. Application develop-
ment teams are formed over the organisational borders. In small organ-
isations people are explicitly responsible for certain functional domains,
extending both over domain and application engineering. Few people are
responsible for domain or application engineering only. Functional domain
tasks in domain engineering have separated descriptions, in addition there
are the application task descriptions.

• Collaboration schemes: persons can assume domain and application engi-
neering roles as needed.

6.7 Applying the FEF

There are three main ways to use the FEF. It can be used to assess the
organisation to get information how well the organisation is doing. It can be
used as a benchmark tool to compare organisations. And it can be used as an
improvement tool to plan the improvement of the organisation.

The result of an FEF evaluation is a profile consisting of a level for each of
the BAPO dimensions. Figure 6.6 gives an example profile, discussed in more
detail in Sect. 6.7.2.

The optimal profile for a given organisation depends on the situation.
In general, having the maximum on all axes may not be optimal. There are
several reasons to prefer a less than maximal profile. A particular organisation
needs to determine from an investment perspective which profile would be
adequate for it. Achieving higher levels may just not be worthwhile.

For example, in immature domains or domains with short system life-
cycles, a less than maximal score may be preferred in at least the B and O
dimensions since fast responses may be needed. Another reason may be that
a company that is a business follower may not need to reach more than the
lower business dimension levels contrary to a company that shapes a business.

6.7.1 Complex Organisations

Software product line organisations are often complex. Development may be
distributed over different departments that are located at different sites and
even in different time zones. Third parties may be involved that are specialised
in doing a part of the work, e.g. through outsourcing. Such situations call for
a practical approach to evaluation.

Applying the FEF to the complete organisation at once would proba-
bly take too much time. Moreover, the lowest common denominator of the
sub-organisations would dominate the profile, obscuring the results of higher-
scoring departments.

98 6 The Family Evaluation Framework

C
ol

la
bo

ra
tio

n

ProcessBusiness Architecture Organisation

level 1

level 2

level 3

level 4

level 5

dimension

aspects

Project
based

Aware

Managed

Measured

Optimising

Independent
development

Standardised
infrastructure

Software
platform

Variant
products

Configuring

Initial

Managed

Defined

Quantitatively
managed

Optimising

Project

Reuse

Weakly
connected

Synchronised

Domain
oriented

C
om

m
er

ci
al

Fi
na

nc
ia

l
V

is
io

n
S

tra
te

gi
c

R
eu

se
R

ef
er

en
ce

A
rc

hi
te

ct
ur

e
V

ar
ia

bi
lit

y

D
om

ai
n

A
pp

lic
at

io
n

R
ol

es
&

R
es

po
ns

ib
ili

tie
s

S
tru

ct
ur

e
C

ol
la

bo
ra

tio
n

Fig. 6.6. Example company profile

A better idea is to apply the evaluation to units of manageable size. Such
units may be departments, divisions, sub-contractors, or even virtual parts of
a group of organisations. Restricting the evaluation to such units means that
only parts of the software product line engineering aspects are evaluated. For
instance, it may happen that a unit is only involved in domain engineering.

6.7 Applying the FEF 99

In that case, the aspects related to application engineering are not applicable,
but the collaboration aspects are still important.

In some organisations, the software product line is structured as a hierar-
chy or as part of a population [148] (Fig. 6.7). A hierarchy exists if there are
several product lines that use a single common infrastructure that is modelled
as a product line. In a population, several product lines reuse different parts
of a very broad platform. Usually no or only few systems use all assets of the
platform.

Applying the FEF to parts (units) of complex organisations gives rise to
the following observations:

• Business involves business relations internal to the complex organisation
as well. In particular, the business relationships of the department that is
assessed with the remainder of the software product line engineering parts
of the organisation. External business concerns mainly apply if the given
part of the organisation is dealing with that concern.

• Architecture concerns apply to that part of the architecture that the spe-
cific unit is responsible for either in creating it or in using it.

• Process concerns only apply for those that the unit is performing.
• Organisation concerns only apply for internal organisation of the unit and

to its role in relationships with other parts of the organisation.

In a hierarchical situation, application engineering for the generic plat-
form is domain engineering for a single software product line. In the case of
populations, it may happen that a department is responsible both for a spe-
cific software product line and for parts of the domain. Although this may
complicate an FEF evaluation, the principles remain the same. Each unit can

Population platform

Product-4
Product-2

Common
product-line

infrastructure

Product-line-2Product-line-1

Product-1
Product-3

Hierarchy Population

Product-4

Product-3

Product-2

Product-1

Fig. 6.7. Hierarchy and population

100 6 The Family Evaluation Framework

be evaluated for each of the different families in which it is involved and in
the interplay between them in the overall product line process structure. The
evaluation has to be applied separately to each of the roles that a develop-
ment unit plays. This means that a single unit may get a separate evaluation
for each of its roles, for example as a platform developer and as a user of
a (larger-scale) platform. These evaluations may result in different profiles.
Similar to the situation in complex organisations, this may mean that only
parts of the FEF can be applied to each role.

6.7.2 Example

As an example, we introduce ProtAct – an imaginary company that provides
security systems for office buildings and business plants. It delivers observa-
tion rooms, cameras, sensors for intrusion, fire and water, and all kinds of
alarms. It provides door locks operated by keypads and other kinds of au-
thentication mechanisms. Since the systems are sold in many countries, many
languages are supported. Each client has his or her own configuration of the
system, and there are many possible configurations available. Therefore, Pro-
tAct develops its software using product line engineering. Now, ProtAct wants
to assess itself to find the best ways to improve this development in the future
in order to reduce software cost to a minimum level and keep lead-times of
new developments as short as possible. It wants to know what are the best
improvement actions to be taken. Initially, the expectation is that the archi-
tecture and organisation dimensions are satisfactory, but that the business
and process may need improvement. Applying the FEF will indicate whether
this intuition is right.

Business

ProtAct has an internal tax system that deducts money from departments
that sell products, to fund serving departments. The departments that do do-
main engineering are examples of departments that get funding. The business
uses a fixed amount of about 40% of the development budget to be used for do-
main engineering. Product management uses a roadmap that plans the future
variants of their products. The roadmap indicates when new variants are to be
built, and it gives feedback to marketing and sales on when these variants will
be available. The roadmap is prepared using feedback from development on
the distribution of new requirements over generic and specific software. Pro-
tAct management pushes to make as many generic assets as possible and tries
to reduce the cost of specialised developments since it is aware that costs are
too high. In particular, the management put limits on development budgets
to reduce the total development costs.

ProtAct has the following business evaluation:

• Commercial : marketing and sales are aware of the software product line.
Product management keeps an eye on features that are needed in the future

6.7 Applying the FEF 101

and is in contact with development to determine when such features may
be available. The marketing department uses this information to determine
which features can easily be supported and which are difficult to build, or
take some time to be finished. The former ones are priced lower than the
latter ones. As there is no specific measurement of the costs and profits of
variability, this aspect is satisfied at level 3: Managed.

• Financial : an internal tax system deducts money from departments that
sell products, to fund domain engineering. A fixed amount of the develop-
ment budget is reserved for domain engineering. The costs and savings of
product line engineering are not yet measured. This aspect is evaluated at
level 3: Managed.

• Vision and business objectives : ProtAct’s management pushes to make as
much as possible generic and reduces the cost of specific developments,
since they are aware that costs are too high. There are limits on develop-
ment budgets to reduce the total development costs, and the management
advocates this to the organisation. Again, product line engineering is not
yet measured; therefore, also for this aspect, the evaluation is satisfied at
level 3: Managed

• Strategic planning: product management uses a roadmap to plan the fu-
ture variants of the product. It involves new variants that are to be built,
and it gives feedback to marketing and sales when these variants are avail-
able. The roadmap is prepared in agreement with development, obtaining
feedback on the distribution of new requirements over generic and specific
software. Co-ordination among different roadmaps is not done. Thus, this
aspect’s evaluation is also satisfied at level 3: Managed.

Combining the results, the ProtAct Company is evaluated in the business
dimension at level B3: Managed.

Architecture

ProtAct has a reference architecture for the complete software product line.
The reference architecture defines a layered structure. Each layer has a frame-
work of components that have to be present in each product. The lower layer
consists of the operating system and database that are used in all applications.
Variants are defined by adding plug-in components at interfaces that are spe-
cially designed for them. Thus, a single application architecture consists of
a collection of fixed framework components and a configuration of plug-ins.
A plug-in component may be specifically built for the application, but many
plug-in components are shared by several applications and are therefore part
of the platform.

ProtAct has the following architecture evaluation:

• Asset reuse level : important reusable assets are the architecture, the frame-
work components and the frameworks themselves. A single application
consists of a collection of fixed framework components and a configuration

102 6 The Family Evaluation Framework

of plug-ins. A plug-in component may be specifically built for the applica-
tion, but many plug-in components are shared by several applications and
are therefore part of the platform. The requirements and test cases – both
regression and integration tests – are reused over the whole software prod-
uct line. As some plug-ins are application-specific and some of them have
their own architectural rules, level 5 is not reached. This leaves ProtAct
at level 4: Variant products.

• Reference architecture: there is a layered reference architecture for the
complete software product line. Each layer has a framework of compo-
nents that have to be present in each product. The lower layer consists
of a single operating system and database that are used in all applica-
tions. Variants are built by adding plug-in components at interfaces that
are specially designed for them. Thus, application architectures consist
of the collection of fixed framework components and a configuration of
plug-ins. A plug-in component can be added using specific interfaces only.
Plug-in components embody the variation points of these interfaces. They
have a configuration interface that is used to select the right variant in
the applications. However, some parts allow plug-ins that are not com-
pletely determined by the architecture, and so the software product line
architecture is at level 4: Variant products.

• Variability management : variation is managed in requirements that de-
termine the configurations and plug-ins that have to be built or used.
Reusable components have standard interfaces to select a variant, as pre-
scribed by the reference architecture. Variability management is satisfied
at level 4: Variant products.

Combining the results, ProtAct is evaluated for the architecture dimension
at level A4: Variant products.

Process

ProtAct has separate processes for domain and application engineering. Do-
main engineering follows parallel tracks to iteratively develop separate parts
of the architecture. A refactoring track is available for keeping the architecture
in shape. Most application engineering departments follow a waterfall model
to produce a single product. Collaboration and co-ordination processes deal
with the following:

• The selection of reusable domain assets in the application.
• Collecting feedback of problem reports and application priorities from ap-

plication engineering towards domain engineering.
• Determining the standard interfaces between domain engineering frame-

works and the plug-in components.
• The promotion of application-specific components and interfaces towards

domain engineering.

6.7 Applying the FEF 103

ProtAct Company has the following process evaluation:

• Domain engineering : it follows several iterative developments for separate
parts of the architecture. A separate track is available for keeping the
architecture in shape. The domain engineering department is at CMMI
level 3. In addition, the domain engineering amplifications are performed.
Therefore, this leads to an evaluation of level 3: Defined.

• Application engineering: these departments usually follow a waterfall
model to produce a single application. Most departments have CMMI level
3, although some of them are still at level 2. Certain level 3 application
engineering activities are performed, such as the technical solution and
validation activities. In total, the evaluation leads to a level 2: Managed.

• Collaboration: these processes are mainly organised by domain engineer-
ing, and they are performed at CMMI level 3. They involve the commu-
nication of reusable assets between application and domain engineering.
The feedback from application engineering towards domain engineering
involves problem reports and application priorities. Not all level 3 collabo-
ration activities are performed though, and the evaluation leads to a level
2: Managed.

Combining the results to the lowest of the levels measured, the company is
evaluated in the process dimension at level P2: Managed.

Organisation

Domain engineering is performed in a department separate from several ap-
plication engineering departments. Collaboration is supported through many
cross-departmental groups that have the responsibility for one or more of
the collaboration subjects, such as roadmaps, global architecture issues, in-
terfaces, problem reports and maintenance, and making application-specific
assets reusable.

ProtAct has the following organisation evaluation:

• Roles and responsibilities: the domain and application engineering roles
and responsibilities are defined, and people are assigned to these roles and
responsibilities. Although there are co-ordinating roles defined between
domain and application engineering, they do not play an important role.
In particular, domain engineers do not play a major role in application
development. As a result, the evaluation for this aspect results in level 3:
Weakly connected.

• Structure: domain engineering is performed in a department separate from
several application engineering departments. A secondary structure is de-
fined through many cross-departmental groups that have the responsibility
for one or more collaboration subject. Domain engineering does not de-
termine the primary structure. The evaluation for this aspect results in
level 4: Synchronised.

104 6 The Family Evaluation Framework

• Collaboration schemes: it is supported through cross-departmental groups.
However, collaboration mainly results in reports between domain and ap-
plication engineering projects. As a result, the evaluation for this aspect
results in level 3: Weakly connected.

Combining the results to the lowest of the levels measured, ProtAct is
evaluated for the organisation dimension at level O3: Weakly connected.

Application of FEF results

ProtAct wants to go to levels B4, A4, P4 and O4. Therefore, they need to
know what improvement actions must be taken. The expected profile was
B2, A3, P2 and O3. Use of the FEF pointed to B3, A4, P2 and O3. This
means that the business and the architecture are closer to their targets than
expected. Because of this, the company decides on an improvement plan to
reach levels B3, A4, P3 and O3 first. This means that the process dimension
will be addressed to reach level P3. Each application department will have
to move to CMMI level 3, and level 3 collaboration amplifications have to be
put in place. For instance, the identification of application assets as potential
domain assets has to improve.

With all these improvement actions, care has to be taken that the business
stays at level 3 and the architecture stays at level 4. This means that the
business and the architecture need attention to stay healthy and to keep their
present quality. It is expected that this will take less effort than what will be
needed in the other dimensions.

The next goal is to go to levels B4, A4, P4 and O4. For the business
dimension, this means that several measurements have to be introduced, e.g.
for costs and profits of variability. For the process dimension, this means
that CMMI level 4 has to be reached in the organisation. In addition, the
quantitative project management amplifications have to be introduced. For
the organisation, this means an improvement of the secondary structure that
deals with collaboration over the organisation.

6.8 Connection to Other Approaches

The FEF is not the first model to evaluate software development. In particular,
in the area of software development processes, there are several capability
evaluation models. The most prominent process improvement framework is
the Capability Maturity Model (CMM). It was developed by the Software
Engineering Institute (SEI) and published in 1993 [50]. Later, the model was
adapted to be applicable for systems engineering in general and renamed
CMMI (see also Sect. 4.5) [140, 139].

In the field of software product line engineering, the SEI published a
Framework for Software Product Line Practice [38] that distinguishes 29 prac-
tice areas, divided into three categories:

6.9 Summary 105

1. Software engineering : to apply appropriate technologies to create and
evolve platforms and products.

2. Technical management : to engineer the creation and evolution of platform
and products.

3. Organisational management : for the synchronisation of all software prod-
uct line activities.

The SEI’s Product Line Technical Probe is based on this framework. It al-
lows one to examine an organisation’s ability to adopt or improve in software
product line engineering. The product line practice framework serves as a ref-
erence model for collecting and analysing data of an organisation. The results
of applying the technical probe include a set of findings that characterise the
organisation’s strengths and challenges relative to a product line effort and a
set of recommendations.

The SEI approaches have influenced the FEF. The CMMI’s basic model
of five maturity levels was adopted for the entire framework. The levels in the
FEF’s process dimension are extensions of the CMMI levels. Software prod-
uct line concerns are reflected in amplifications7 of CMMI practices, mainly
in levels 2–4. These amplifications deal with the separation of domain and
application engineering and with co-ordination activities. An FEF evaluation
is similar to a CMMI assessment: for each of the dimensions, an incremental
questionnaire leads to an evaluation result. The FEF differs from the Frame-
work for Software Product Line Practice as it is differently structured (for
example business is a primary dimension), and its process dimension is ex-
plicitly aligned with the CMMI.

Unlike CMMI – which has a single scale for a single dimension: process –
the FEF has a scale for each BAPO dimension. Most importantly, the FEF
is focused on software product line engineering. The separation into two pro-
cesses and the explicit management of variability are the main concerns in
the evaluation. As such, it is complementary to the CMMI, which is used to
evaluate the single system software engineering process.

6.9 Summary

This chapter gives an overview of the Family Evaluation Framework for the
evaluation of software product line development units. The FEF improves ex-
isting approaches by systematically distinguishing the four BAPO concerns:
Business, Architecture, Process and Organisation. Each of these concerns
is evaluated separately, and each leads to its own evaluation value. In the
evaluation, only software product line development issues are covered. Other
software development issues are treated elsewhere and are not part of the

7 An amplification is an adaptation of a CMMI practice by specialising it to product
lines

106 6 The Family Evaluation Framework

framework. In particular, the framework relies on process maturity models,
like CMMI, for normal software development process issues.

Each dimension of the framework has a collection of aspects that are to
be considered in the evaluation. Dependent on the evaluation in these aspects
a level from 1 to 5 can be obtained. At level 1, no software product line
engineering aspects are dealt with. At level 5, all these aspects are satisfied.
Level 5 is not an ideal situation that does not allow improvements any more.
We consider it unrealistic to have an ideal situation as highest level, since such
a situation is unreachable, and because it differs from company to company
and may even shift in time; there is not a single best profile that fits every
situation.

The result of an evaluation is a profile that can be used for several reasons,
such as assessing a department, benchmarking with other departments or
companies, or as a starting point for improvement actions.

For software product line engineering organisations that are distributed
over several sites or time zones, evaluations can be performed per depart-
ment. Since a department will only perform part of the software product line
engineering process, the evaluation must be adapted to suit this situation.
Likewise, when the product line is structured, the evaluation may be per-
formed for several roles separately.

This chapter provides a first public version of the FEF. A steering com-
mittee has been established to guarantee the continuous improvement of the
FEF, based on company experiences.

The evaluation levels for the business dimension are project-based, aware,
managed, measured and optimised. At the initial level, there is no real business
involvement in software product line engineering. The business deals with a
project-based organisation, and all projects are treated in a similar way by
the management. The business dimension of the FEF deals with the following
aspects:

• Commercial : from an unaware state, product management, marketing and
sales force get aware of the possibilities of dealing with managed variabil-
ity. In the higher level, the marketing and sales grow to use variability
management in such a way that the product planning supports the ex-
pected sales, and marketing supports the variants that are available in the
software product line.

• Financial : initially, there are no specific budgeting or investments available
for software product line engineering. At the next level, the management
is aware of possible benefits, but the best way to deal with this is still to
be decided. With support from top management, initial investments are
made to fund domain engineering. In the higher level, budgets and funding
of domain engineering get more sophisticated and support the position of
domain engineering within the organisation. Domain engineering earns its
own budget through a solid internal business model.

6.9 Summary 107

• Vision and business objectives : initially, the vision is carried only by the
people doing software product line engineering. Next, the management
gets aware and incorporates the managed variability in their vision and
objectives for the future.

• Strategic planning: from an initial stage, where software product line en-
gineering is not visible in the plans, it becomes an important driving force
in the planning at the higher levels.

The evaluation levels for the architecture dimension are independent de-
velopment, standardised infrastructure, software platform, variant products
and configuring. At the initial level, there is no domain architecture available,
each product gets its own architecture and reuse is unsystematic and ad hoc.

• Asset reuse level : from an initial level of unsystematic reuse, this aspect
grows via a common infrastructure to larger parts of the architecture that
is reused, ending in a level where reuse is managed through variation
points.

• Reference architecture: from an initial level where no domain architecture
is available, this aspect grows to a situation where a reference architecture
governs all applications, greatly simplifying the application-specific parts
of product architectures.

• Variability management : from an initial level with no variability manage-
ment, the aspect grows to a level where variability is fully integrated in
the architecture and variants are configured.

The evaluation levels for the process dimension are based on CMMI: initial,
managed, defined, quantitatively managed and optimising. At the initial level,
there are no software product line processes available. Domain engineering and
collaboration are almost absent. The process dimension of the FEF deals with
the following aspects:

• Domain engineering : from being absent, this grows to be the dominating
process. It starts with the determination of commonality and variability
within the reusable platform and ends with the planning and definition of
policies for all application engineering processes.

• Application engineering: from being the only development process, this as-
pect grows to processes at a high-maturity level, reusing not only technical
assets, but all kinds of guidelines and rules as well.

• Collaboration: from being absent, this becomes an important set of mature
processes supporting the co-ordination between the domain and applica-
tion engineering processes. It involves activities that align other processes
and that communicate available assets between the different projects.

The evaluation levels for the organisation dimension are project, reuse,
weakly connected, synchronised and domain-oriented. At the initial level,
there are no organisation structures available for doing software product line
engineering. If at all, it is done within a single department, invisible to the

108 6 The Family Evaluation Framework

remainder of the company. The organisation dimension of the FEF deals with
the following aspects:

• Roles and responsibilities: from a state where they are non-existent, the
organisation creates more and more domain engineering roles, up to the
point where they become the most visible engineering roles in the organi-
sation.

• Structure: from a state where the structure is defined by a project-based
product organisation, domain engineering grows to define more of the
structure. At first, this happens mainly in the secondary organisation,
but eventually in the primary organisation too.

• Collaboration schemes: from a situation where there is no organised
collaboration, the co-operation moves from an internal focus to a co-
operative one.

Part II

Experience Reports

7

Experiences in Product Line Engineering

No matter how ingenious a software engineering technology sounds, no matter
how well it is theoretically proven, this does not predict in any way its real-
world success. In this respect, product line engineering is no exception to
the rule. Only practical experience can show whether and how product line
engineering works. In this part, we focus on exactly these practical experiences
and demonstrate that product line engineering does indeed work in practice.
In particular, we also show how it works in industrial settings and which
adaptations must be made to the basic approach to account for different
environments.

Compared to other kinds of software engineering techniques, product line
engineering is actually rather difficult to analyse. The reason is that it is not a
single technique – like inspections – which can be studied during a very short
time-span, strongly limiting the number of influences that must be taken into
account. Rather it is a life-cycle encompassing approach. As a consequence,
it is necessary to evaluate the success of product line development in realistic
organisational contexts: in full-scale case studies.

In the following chapters, we discuss different real-life case studies. In
Part III, we compare and analyse them in order to highlight the different ap-
proaches and success factors they exhibit. Each of these case studies demon-
strates very specific characteristics, which are required by the wide range of
different development contexts.

In the remainder of this chapter, we introduce the very core of this book,
namely a wide range of experiences on software product line engineering. We
discuss in Sect. 7.1 some of the basics of experimental software engineering.
This is followed by an overview of other work on experimentation and case
studies in product line engineering. The basics of the case studies in this book
are discussed further in Sect. 7.3 before we give a brief overview of the various
case studies in Sect. 7.4.

112 7 Experiences in Product Line Engineering

7.1 Experimental Software Engineering

Software engineering supports the real-world production of software in terms
of efficiency of the production (e.g. costs, time to market) and in terms of
quality of the resulting product (e.g. reliability, portability, innovative func-
tionality). Thus, the ultimate test for any software engineering approach is
only possible in the real world. Only if proposals can be substantiated by real-
world experience, we can accept that we are making progress towards a more
professional level of software engineering [13].

The paradigm of experimentation in software engineering is a major factor
in the concept of this book. Software product line engineering is still a rather
new approach in software development. Even in organisations that already
strive to perform product line engineering, the full potential of the approach
is not yet achieved as only part of the relevant practices are truly performed.
Investing in a full adoption of product line engineering requires a fundament
of trust in an organisation and a good understanding of the key practices and
their relevant benefits. This understanding can only be achieved by analysing
experiences that are drawn from a large number of environments and devel-
opment contexts.

An experimental approach to software engineering is also very important
from a different angle: only feedback from actual experience can close the
learning loop, which is very important to continuously improve software en-
gineering approaches.

The importance of experimentation in software engineering has already
been recognised some time ago [16]. Actually, it has been fundamental to
such software engineering efforts as the Software Engineering Laboratory at
NASA [14].

The core of experimental software engineering is the distinction of different
types of experiments. This is shown in Table 7.1.

Table 7.1. Types of experiments in software engineering [13]

One project More than one project

One team Single project (case study) Multi-project variation
More than one team Replicated project Blocked subject-project

The various approaches to experimentation have different trade-offs. For
example, case studies are the most detailed and most realistic opportunities
to gain real-world experience. Thus, they enable the most profound results
on the practical relevancy of the analysed approach. This is also called the
external validity of the analysis. However, shortcomings of case studies are
that the transfer of the gained experience to new situations is rather difficult,
as each new situation is certainly different from the precise situation described
in the case study. Thus, it is necessary to generalise beyond the single case

7.1 Experimental Software Engineering 113

study, by identifying commonalities among the results of a sufficiently large
set of individual case studies. This book provides a first major step into this
direction.

The other extreme of experimentation approaches are experiments with a
large amount of replication (e.g. replicated project or blocked subject-project,
Table 7.1). They enable to assure that the underlying observations are not
merely accidental and they support the quantification of relations to such
mitigating factors as experience, use of specific programming language, etc.
This is also called internal validity.

In an ideal world, different approaches to experimental validation are used
synergistically in order to provide an optimal validation of product line engi-
neering. In this book we will focus on case studies:

• This book has its roots in the ESAPS, CAFÉ and FAMILIES projects.
These projects aimed at the large-scale application of product line engi-
neering in industry. This provided an unprecedented opportunity to collect
product line engineering experiences on full-scale projects. This wealth of
real-world projects actually provides a basis for cross-sectional analysis.

• Experiments on individual techniques and approaches have already been
performed in other contexts. We do thus rely on this experimental data
and present it where adequate, but we do not strive to fully reproduce it
here.

• We are aiming for the practitioner. The analysis of full-size, real-world
projects is most telling to practitioners as this matches most closely per-
sonal concerns and difficulties.

Case studies have the major advantage that they are firmly grounded in
the real world. Thus, they are most relevant to the practitioner who seeks
answers to such questions like the following:

• What activities should I perform in order to improve my reuse level?
• Which key success criteria do I need to address to achieve sustainable

product line engineering?
• Does product line engineering impact other parts of my organisation – and

if so – what is required from them?

This book provides a comparison of a rather large number of different
case studies (multi-project variation) in order to ensure that the overview
is not biased by a specific context. The presented case studies were mostly
conducted in the context of the FAMILIES project. Besides this overall project
context, the various case studies have very little resemblance. They come from
all kinds of different companies: small and large; information systems and
embedded.

Before we discuss the various case studies described in this book further,
we now briefly survey some of the major case studies that have been described
in the product line literature.

114 7 Experiences in Product Line Engineering

7.2 Experience Reports on Product Line Development

Product line engineering has always been a practice-oriented approach. The
approach itself mainly originated in industrial practice and the analysis of
industrial case studies has always been a significant part of the work in
this area. However, especially during the early stages of product line de-
velopment, the case studies were typically single case studies (i.e. with-
out multi-project variation).1 Most of these early case studies had in com-
mon that they described a rather revolutionary approach to product line
engineering. Over time, more evolutionary approaches to product line en-
gineering were described as well [34, 141] illustrating the fact that there
is more than one way to start with software product line development in
practice.

Today, the single case study approach is still the backbone of experience
collection in software product lines. As a consequence, further case studies are
continuously described [129, 136]. This approach is also institutionalised by
the product line hall of fame as a continuous experience-collection approach
for the community [104].

Only with an increasing focus on product line engineering more cross-
sectional analysis was performed. However, these studies are usually restricted
to a certain aspect. A rather large subset of studies focuses on technical
and architectural issues. A common misconception of development for reuse
is that the resulting generic solutions are less performing than those that
are specifically developed. Zhang and Jarzabek show that this is an inap-
propriate conception based on a reengineering case study [157]. Svahnberg
and Bosch provide an analysis of characteristics of the evolution of product
lines. As a result, certain guidelines are provided to support the technical
evolution [137].

Niemela even provides a cross-sectional analysis of 17 different small and
medium-sized companies to determine strategies for the systematic configura-
bility of product lines [98]. Along the same lines a study of Raatikainen et al.
analysed the success factors of purely configurable product lines [111].

Besides domain engineering issues, the application engineering problems
that arise from the increasing complexity of the product line infrastructure
were also subject to case studies. Several guidelines were derived from an
analysis of two case studies [44].

A very specific subset of product line engineering approaches is formed by
those who rely on the formation of domain-specific languages for describing
the resulting applications. Tolvanen and Kelly discuss success factors and ap-
proaches for modelling a domain in terms of domain-specific languages based
on several case studies they performed [142].

This book provides a cross-sectional analysis of a rather large number
of different case studies of product line engineering. As opposed to most

1 Typical examples of this kind are [17, 43, 47, 88, 126]

7.3 Case Study Basics 115

proceeding cross-sectional analysis, the aim is to cover all major aspects of
product line engineering as defined by the BAPO model, which we introduced
in Part I.

7.3 Case Study Basics

The various case studies described in this book are based on a common ap-
proach, which provides a basis for comparing the various case studies. This
section provides an overview of the principles the case studies largely ad-
here to. The following sub-section discusses the major information that was
attempted to collect in the case studies.

7.3.1 Setting Up Case Studies

From a scientific point of view, it would be optimal to have each and every case
study thoroughly prepared in advance and to have a measurement program
that accompanies it and systematically analyses its details. Unfortunately, re-
ality is not always fully compatible with rigorous scientific approaches. Prod-
uct line engineering is not different from other areas of software engineering.

The ITEA projects ESAPS, CAFÉ and FAMILIES [143] provided the
basis for the BAPO model and the Families Evaluation Framework (FEF).
As a result, the various case studies that were part of these projects provided
the basis for our analysis of these frameworks and most of the case studies
described in this book are actually derived from these projects. However, the
actual case studies and the Families Evaluation Framework were developed
in parallel. Thus, the projects could not yet use the FEF as a basis for their
development. As a consequence, all descriptions of case studies in this part of
the book are based on a thoughtful posterior analysis of the projects.

The various case studies aim to cover each of the dimensions in detail.
However, they were performed in different contexts. This lead to different
focuses with respect to both comprehensiveness of process coverage (not all
case studies addressed all life-cycle phases) and on the different dimensions
(e.g. some organisations focused strongly on process concerns, while others
mostly neglected this issue). Despite these restrictions, each of the different
case studies aims to describe the experiences in sufficient detail to support
the understanding of an evaluation along all of these dimensions.

Going from a non-product line organisation towards a product line organ-
isation is a major transition. Processes, attitudes and technologies, sometimes
even the business model, change in this transition. Thus, the case studies aim
to cover both the initial situation in terms of BAPO – and in particular what
caused the transition – and the new situation that was achieved after the
transition was made.

Of course, it is important for the interested reader to know the results
of product line development. What are the benefits to be expected? What

116 7 Experiences in Product Line Engineering

aspects were instrumental in achieving them? But sometimes it is even more
interesting and enlightening to see what did not work; the mistakes that should
be avoided and the costs (in terms of effort and otherwise, necessary changes,
etc.) that had to be imposed on the organisations. The various case studies
are based on this rationale.

7.3.2 The Case Study Format

In order to simplify the understanding of the case studies and to ease their
comparison, we describe all case studies in a comparable manner. While some
deviations had to be made here and there, overall, the case studies are pretty
much homogeneous.

All case studies start with a description of the company and end with a
summary with the major findings and of BAPO aspects covered. Internally,
they are structured as far as possible based on the BAPO model. In particular,
the case studies aim to answer the following questions.

Motivation

• What motivated the transition to a product line approach in the first
place? Why did the companies embark on such a profound change of
their software development? Was it supported by adequate foresight and
analysis?

• How was the transition planned? What difficulties were expected? Which
occurred? What measures were taken to protect against the difficulties –
before and after their occurrence?

• What were positive surprises? Things that just went right, or at least much
better than expected?

Approach

• What did the development approach look like before the transition – what
did it look like afterwards?

• What was the initial context? How was business performed?
• How can development situation, company context and technology be char-

acterised in terms of the BAPO dimensions?

Business

• How did the business situation and the transition to product line develop-
ment correlate?

• How did it impact – and in what way was it driven – by other departments
in the organisation besides software development? What was the impact
on sales? On marketing and branding? What was the impact on the overall
business position?

• Was it possible to align the software development product line strategy
and the marketing product line strategy? Which was the stronger driver?

7.3 Case Study Basics 117

Architecture

• How was the architecture created – or evolved – into its present state?
• How is variability represented in the architecture? How is new variability

introduced and outdated variability removed?
• What mechanisms are in place in order to enforce the architecture and the

accompanying variability mechanisms? What level of freedom do specific
projects have to customise the architecture? How are deviations from the
architecture handled?

• Was it possible to take advantage of existing assets like designs, compo-
nents, or even complete software frameworks? Or was transfer restricted
to domain knowledge?

Process

• How is the differentiation between domain engineering and application
engineering realised? What exactly is the difference between the two in
the specific organisation?

• If a standard process model is in place, did this help or hinder the effort?
Which adaptations had to be made? How were adaptations made and to
which processes?

• In particular, how did requirements management, project management and
configuration management change? Which measurement programs were
set up in order to validate any improvements?

Organisation

• Which roles, specific to product line engineering, were introduced? How
was allocation of these roles to people handled?

• Was a real differentiation into a domain engineering and an application
engineering unit introduced? What effects did this have on the overall
organisation dynamics?

• What were the main concerns that governed the organisational change?
To which degree were they satisfied?

Results

An important contribution of the individual case studies is, what results have
been achieved and what would be done differently in the future?

• What was the major impact of the product line introduction? What were
the major obstacles?

• What impact did product line engineering have on the overall business
performance? What improved and what became worse?

• What are the limits to product line engineering that are currently seen?

118 7 Experiences in Product Line Engineering

Lessons Learned

• What are the major lessons? What went good? What bad? Which good
ideas turned out to be false alleys?

• What would be done differently next time around?
• What recommendations are perceived that they can be generalised beyond

the current situation?

7.4 Overview of the Case Studies

Ten case studies are presented in this part of the book, a considerable number.
This section provides a brief overview of these case studies and their respective
focus:

The case study on AKVAsmart (Chap. 8) describes the result of a major
reengineering effort that aimed at the migration of several individual software
products into a single product line. This aimed at easing development and
maintenance of the products and providing a homogeneous look-and-feel to the
products. The integration of the individual products resulted in a reduction
of the overall code size by more than 70%.

The case study on Bosch presents the experience from setting up a large-
scale product line engineering effort at Bosch Gasoline systems (Chap. 9).
Besides capturing major improvements in terms of cost and time to market,
the effort also resulted in reducing calibration and maintenance effort for
resulting systems.

DNV started its product line effort in the context of the planned setup of
a new product platform (Chap. 10). The major goal of the product line effort
was to integrate the overall development and through the integration of the
underlying structure reduce the total effort.

Of all case studies, market maker provides the best example for a very
small organisation that successfully applied a product line approach and was
able to scale it to an extremely high number of successfully delivered products
(Chap. 11). This success was accompanied with a very high reuse rate that
resulted in very short development cycles for the final products.

Nokia Mobile Phones is very well known for its mobile phone products.
It delivers an extremely high number of different mobile phones, differing not
only in the respective model type, but also with respect to the localisation,
the supported network types, etc. (Chap. 12). Nokia can be regarded as quite
the opposite to the market maker experience. Here, the organisational size
was about 1,000 developers.

Nokia Networks provides networking technology, particularly in the area
of mobile infrastructure. Modern communication technology infrastructure is
extremely complex. Thus, the product line efforts at Nokia Networks are not
only driven from attempts to save costs and improve time to market, but more
from a general desire of dealing with complexity (Chap. 13).

7.4 Overview of the Case Studies 119

Philips Consumer Electronics set up a product line in the context of tele-
vision systems (Chap. 14). This effort aimed at managing the explosion of the
software size within television systems. Due to the introduction context, the
chapter nicely presents a case were reengineering both on the software and on
the organisational side were required.

Philips Medical Systems (Chap. 15) again provides an example of success-
ful product line engineering in a very large organisation of more than 1,000
developers. In this case, the product line approach was carefully planned from
a strategic perspective. It is built on an existing asset base. The approach had
a strong impact on the business competitiveness of the organisation, leading
to an effort reduction of 50–25% per reused component with the corresponding
time-to-market reductions.

At Siemens the focus within product line engineering was mainly on test
optimisation (Chap. 16). Thus, product line engineering was only conducted
partially. Within testing the organisation gained about 57% reuse, leading to
an overall acceleration of the tests of about 75%.

The case study of Telvent is situated in the area of a TV-software platform
(Chap. 17). This study focuses mainly on the architectural measures that were
taken to provide the necessary degree of flexibility. This architectural evolution
was aligned with a corresponding business strategy.

The very breadth of case studies we discuss in this book already illus-
trates a very important point: product line engineering is an approach that
can – with suitable tailoring – be applied in a wide range of organisations
and domains. Thus, no matter in what kind of organisation you are currently
working, product line engineering can most likely improve the performance of
your software development significantly.

8

AKVAsmart

with Magne Johnson
Magne Syrnstad

Company facts of AKVAsmart ASA

Organisational size: 6–10 developers.
Starting Mode: Replacement of legacy systems.

Experienced improvements:
- Large reduction of code size by more than 70%.
- Uniform look-and-feel.
- Common technological platform and code style.
- Easier reuse, maintenance and integration.

Business: AKVAsmart management supports the product line
engineering approach and uses it in the planning of
new products.

Architecture: There is an enforcing architecture, involving a
framework and plug-ins for the product line.
The domain is well known and mature, and the vari-
ation points are well known.

Process: The software process is defined but flexible, using ele-
ments from such different process models as the Uni-
fied Process, extreme Programming and SCRUM.

Organisation: The software development part of the organisation is
too small to have separate units. Most of the work is
done on general components that will be configured
into specific products. Some customers get special
functionality developed.

122 8 AKVAsmart

8.1 Introduction

AKVAsmart ASA1 is the result of a merger in 2003 between the three leading
companies in feed control and farm management software for the fish-farming
industry. It is the leading supplier of technology and software to the fish-
farming industry. The company is divided into two divisions:

1. Information Technology and Consulting (ITC): primarily supplies biologi-
cal Enterprise Resource Planning (ERP) software for control, traceability,
quality, planning and budgeting.

2. Farm Process Technology: supplies hardware like camera technology, feed-
ing technology, feed sensor technology, feed control software, barges and
more.

AKVAsmart is present in all major industrialised fish-farming countries,
with a focus not only on the salmon industry, but also on emerging species.
It has offices in Norway, Chile, United Kingdom and Canada. The company
has approximately 100 employees, 25 of whom work in ITC. The revenue for
2004 is approximately €15 million.

8.2 Motivation

8.2.1 Case Description

Fish-farming involves a lot of embedded equipment that has to co-operate.
Figure 8.1 shows a marine fish-farm site with some examples of AKVAsmart
technology. It shows an optimised fish-farm. The top left part of the figure
shows the office staff working with the biological ERP software (Superior Con-
trol2). The top right part of the figure shows the head office, supplied with
the decision support software Superior Manager. Down to his left a Doppler
sensor is shown. This is a pellet sensor using sound waves to measure the
amount of feed passing through the water. This technology is used together
with feed control software. At the bottom left, the figure shows a sensor mea-
suring stream and direction of the water. Next to this figure is a pellet counter
in the form of a funnel and photocell. At the bottom right, the picture shows
an operator controlling feeding using the feed control software and cameras.

AKVAsmart FPT supplies equipment and technology, mainly on the mar-
ket for marine production, and in some degree on freshwater production.

1 From here on, the term ‘AKVAsmart’ is used as a short hand for ‘AKVAsmart
ASA’

2 AKVAsmart ITC supplies farm management software under the Superior Soft-
ware banner

8.2 Motivation 123

Fig. 8.1. Farming site with AKVAsmart technology

Figure 8.2 illustrates salmonoid production from eggs to the sale of the fin-
ished product. AKVAsmart provides equipment for the Freshwater and On-
growing/Marine stages of the production chain. This equipment includes the
following:

• Feed barges (with feed silos and feeding systems for farming).
• Central feeding systems for feed distribution into the cages.
• Feed quality control (automated feeding sensors based on Doppler or pellet

counter technology).

E
ggs

H
atchery

F
reshw

ater

Ongrowing/Marine

H
arvest

V
A

P

Logistics

S
ales

Equipment

Superior Software

Fig. 8.2. AKVAsmart activities in the fish-farming market

124 8 AKVAsmart

• Sensors (stream, temperature, oxygen and more). Different sensors are
needed to determine a feeding strategy and to measure environmental
hazards for the fish. Colour camera technology can be used to visually
study the fish.

• AkvaControl software is the feed control software using the sensor infor-
mation as input, providing optimal feeding strategy to the feeders.

• Biomass estimation is a stereo camera solution used to measure the average
weight of the fish.

The Superior Software for farm management covers the production chain
up to the harvest phase. Plans exist to extend this support further. The current
software consists of the following main categories:

• Production planning: short- and long-term production planning from eggs
to sales.

• Production control : the main product, where all biological production in-
formation is recorded and stored. It consists of a range of integration points
to control among others software and governmental portals.

• Documentation, traceability and food safety: this is one of the main focus
areas in food production, and it is fully covered in the product portfolio.

• Budgeting/cash-flow management/cost analysis.

The farm management software is currently the most important software
to most fish-farming companies. The complete product cycle (three years for
salmon) means that the value of the company depends heavily on having
correct information about the biological status of its products.

The topic of this case study are the software products of AKVAsmart
ITC. The company is developing a product line with a flexible architecture
that satisfies the needs of its different products. The goal is to reimplement all
legacy products to a common platform. This common platform has to provide
general as well as domain-specific services to the applications. This means that
a large range of different products within the value chain is being merged into
a single product line, while keeping in mind

• variation and configuration management
• common and variable needs in the different products
• the ability to select and configure parts of the platform by application

engineering
• a common look-and-feel for the applications
• the applications must be able to change and extend existing behaviour.

The expected benefits of product line development are nothing too original
in a product line setting. A major goal is to increase productivity, and shorten
the time to market for new products, including variants covering new species
and variants of existing products.

8.3 Approach 125

8.2.2 Market Drivers

Different species have different characteristics regarding growth, feed utilisa-
tion, life-cycle etc. Figure 8.1 presents a typical salmonoid production farm.
Differences occur for other species. Different kind of seafood like shrimps and
shellfish have a distinctly different biology, and this is reflected in the way
they are grown. In the end, no matter what the species is, it is the quantity
harvested that is most important.

There are different production types, among others land-based produc-
tion, seawater production and pond production. Each type provides different
requirements for environmental registration. Different countries have different
governmental requirements for fish-farming. Considering the market require-
ments we see a clear distinction between small and large customers. Small
customers often have a small production farm on the side. They employ just
a few different users for their system. In the end, biomass control is most
important to them. Larger customers may have hundreds of sites, in several
countries on three continents. Their main request is for workflow support. As
the software is used in different parts of the world, it supports many languages,
among others Norwegian, English, Spanish and Japanese.

Several licensing-related limitations of system functionality are supported,
including the availability of plug-ins, number of users and production size.
Access rights, role and personal preferences determine what a system looks
like to a particular user. The bandwidth that is available for communication
between the equipment varies a lot per area. Currently, certain areas only
have satellite links, providing expensive and narrow bandwidth connections,
although that is rapidly changing.

8.3 Approach

At the start of the project, Microsoft .NET was chosen as development plat-
form with C# the programming language. For the adoption of product line
technology, an evolutionary strategy was selected. Development of a first
framework release coincided with the development of the first product in the
product line: Superior Manager, which is a small reporting product. At the
time of Superior Manager’s completion, the framework covered little more
functionality than what was needed to run this first application. The frame-
work was extended in parallel with the development of Superior Control, the
second and major product. Superior Control was released together with the
second, and current, version of the framework. This strategy of parallel de-
velopment of framework and applications will continue in the future. The
framework will be extended as additional functionality is required by the ap-
plications, but releases of the framework will be limited to major product
releases. The reason is simply that releasing a new version of the framework
is a costly operation.

126 8 AKVAsmart

This release strategy is likely to create conflicts in the future. In some
cases, a new plug-in may require extra functionality in the framework. This
plug-in may therefore have to incorporate functionality that logically belongs
to the framework, at least temporarily until the next version of the framework
is released.

8.4 Architecture

The product line architecture is a layered plug-in framework based on the
client–server paradigm (Fig. 8.3). The business layer is separated from the
presentation layer. The business layer typically runs on a server with multiple
clients on separate computers. Communication between clients and server is
done through standard .NET remoting mechanisms.

The framework has different flavours specific to clients and servers, each
offering some additional functionality. Business data is stored in a database
accessible to the business layer. The framework provides services that hide
the separation of the client and server parts from plug-in developers. It also
includes the main layout of the database.

Most plug-ins have a client (ALP) and a server part (BLP). In addition
to this, a plug-in may extend the database (DBLP). Some plug-ins have no
presentation part, like BLP2 and DBLP2 in Fig. 8.3. Typically, these plug-
ins are available upon request to provide some services to presentation layer
plug-ins, for example integration with an external system. Other plug-ins are
representations of loose couplings to external services, like ALP3. They merely
include an external service in the user interface. An example of such a loosely

FW

BLFW

DBFW

ALP1

BLP1 BLP2

ALP3

Oledb, SQL

.NET Remoting

Presentation /
Client

Business /
Server

Database

DBLP1 DBLP2

Fig. 8.3. Vertical plug-in architecture. The lines indicate parts belonging to the
same plug-in or framework

8.4 Architecture 127

coupled application is the integration to a web browser automatically showing
the weather forecast for a site.

8.4.1 The Framework

The main task of the framework is to provide the plug-ins with facilities
such as loading, communication between plug-ins and communication between
the client and server parts of plug-ins. For the client side, there is also GUI
functionality available to facilitate a standard way of building up user interface
screens.

When the user signs on, the framework has the responsibility of checking
accesses, licenses and to configure the application according to the user’s role
and preferences. The framework also provides the functionality needed to run
certain standard tasks at specific times. Functionality is available that allows
users to share their generated reports and data.

Besides this generic functionality, the framework also supports tracing,
which is more domain-specific. By nature of the trade, fish is handled by
groups, and may be moved about quite a bit. This means that tracing is a
necessary part of handling (historic) data regarding a group of fish, such as
calculation of growth. Tracing is used by many plug-ins, and adding it to
the framework is a logical step. Because tracing is a challenging task with
respect to performance, it is physically located close to the database, on the
server-side flavour of the framework.

Plug-ins are highly independent of each other. This makes it easier to
provide multiple variants of a product, and to sell functionality in pieces. A
major feature of the product line is that it is product-independent. The plug-
ins are set up in such a way that almost any configuration of them works,
although some would make no sense. This means that while product planning
decides which features are to be made, the exact size and shape of the products
are unimportant to the developers.

To reach this, all communication between plug-ins goes through the frame-
work, either as broadcasting or via direct connection through framework in-
terfaces. An example of the use of the broadcasting mechanism is populating
a right-click menu on a site. The contents of the menu list depend on the
available plug-ins. A broadcast is made for plug-ins that have menu items to
add. Plug-ins do not have to worry about what other plug-ins are available
for the site: this information is collected on-the-fly by the framework. Broad-
casting is also used to check if multiple plug-ins are editing the same data
concurrently.

The alternative to broadcasting is direct communication through special
determined interfaces. Direct communication is used in cases where broad-
casting is unfeasible. This may occur, for instance, if a task involves very
frequent communication of large volumes of data. Like broadcasting, direct
communication is handled by the framework, but it is set up at sign on. This
scheme allows for the same flexibility with respect to combinations of plug-ins

128 8 AKVAsmart

in a product, with options becoming unavailable when the targeted plug-in
is not there. In this case, however, communication is set up once in advance,
rather than on-the-fly each time that it is used.

The described set-up allows new plug-ins to be integrated and removed
in an easy and fail-safe way. Although it is possible to break the rules of the
architecture by making direct references between plug-ins, doing so is cum-
bersome and requires special code in both plug-ins to work. The architecture
is enforced by making the right way the easy way.

8.4.2 Examples of Plug-ins

To give a better idea of what plug-ins can be, we describe two examples.
The first example deals with two plug-ins that are frequently used to de-

scribe a part of an organisation (Fig. 8.4). One plug-in is called MyOrganisa-
tion. When initialised it registers itself on the main menu in the top left-hand
corner of the window. When the plug-in is activated a tool window is shown
on the left. Here, the user can navigate the tree structure of his organisation.
In addition to this presentation layer part, the plug-in also has a business layer
part, which is responsible for fetching organisation data from the database.
The other plug-in is called SiteStatus. This plug-in shows the status for a site,
and occupies the main part of the screenshot as a tab control. This plug-in
is activated by right-clicking a site in the organisation view on the left and
selecting “Show Status”. Again, the plug-in has a business layer part to fetch
the data from the database. These plug-ins are unaware of each other, and the
framework does not know about either of them until they register themselves.

Fig. 8.4. Organisation view

8.5 Results and Impact Evaluation 129

Fig. 8.5. Weather forecast

At start up, MyOrganisation asks to be placed in the “Administration” folder
of the main bar, and so becomes available to the user. SiteStatus registers
itself to be shown when a site is right-clicked, regardless of where this hap-
pens. MyOrganisation is unaware of the context of the right-click menu as it
is populated at run-time. Thus, removing one or two of these plug-ins will
reduce the functionality of the system, but will not confuse other parts as
they are independent of each other.

The second example deals with the Weather Forecast plug-in that inte-
grates weather information into a system. Weather data is bought from an
external company. The plug-in has a business part that collects site data
(mainly locations), and provides the left site browser (Fig. 8.5). The main
part of the window is a web page wrapped into the application, delivered
from the Storm Weather Center. Some wrapping is done to make it look more
integrated than it really is. The main work of the plug-in is to allow for en-
abling and cancelling subscriptions of weather data for different sites. As this
data has a monthly fee, many companies subscribe to it only during spring-
time when boat activity is high. Although in this example the weather browser
is a separate part of the user interface, the architecture does allow a set-up
where weather info is available for display on the right-click of any site.

8.5 Results and Impact Evaluation

The first product that was based on the new platform is Superior Manager,
which was released in April 2005. The next product is Superior Control.net,
which was released in August 2005. With it, version two of the framework

130 8 AKVAsmart

Superior Manager
- Advanced reporting

Framework

- Role based access control
- Dynamic plug-in loading
- Scheduling
- Multilanguage
- Workflow
- Configuration
- License

Superior Control.net
- Main application

Enterprise Planner
- Planning application

Enterprise budgeter
- Budgeting application

Quality system
- Fish health, quality

Common business components
- Sites
- Units
- Batches
- Species
- Tracing/trace calculation
- Growth models

Superior Service Log
- Maintenance Support

Fig. 8.6. Product line applications

was shipped. This required small changes in Superior Manager. Each of the
products may be considered a small product line of its own because customer-
dependent variants are delivered.

The complete set of products, shown in Fig. 8.6, forms a marketed product
line called Fishtalk. The white boxes are the core AKVAsmart products. Su-
perior Service Log is a purchased third-party maintenance system. The dashed
boxes of Enterprise Planner and Enterprise Budgeter are planned products,
and may be developed in-house or bought from external parties.

The old version of the products had evolved without much focus on design.
As a consequence, it consisted of a lot of copy and paste code, and contained
well above a million lines of code (excluding blank lines and comments). Al-
though the current code base covers slightly more functionality,3 it is less than
a third the size of the original (cf. Table 8.1).

Proper design shrinks code.
The framework drives efficiency in application development through reuse

of commodity functionality. The flexibility of the framework makes it possible
to extend the product line in the direction of new species through simple
extension and configuration mechanisms. This way, a larger part of the market
can be covered. Moreover, products are well integrated. The reuse of crucial
skills between projects is another way to increase productivity.

3 Some features were left out, some others were added. Overall, the new systems
offer more functionality than their pre-product line counterparts

8.7 Outlook 131

Table 8.1. Platform and applications code size

Product / Codesize #Files #Classes
component (kloc)

Framework 70 1,020 1,577
Manager 40 705 793
Superior Control.net 125 1,930 2,300
Imports 25 310 385
Various 30–50

Total 290–310 > 3,965 > 5,055

8.6 Lessons Learned

Time passes. The development time of the product line is longer than antic-
ipated. While the architecture and framework mechanisms have not caused
any problems, the development of content to match the old products have
taken much more time than planned.

The plug-in architecture delivers what was expected of it. The main mech-
anisms of the framework survived without major changes. Most changes that
did occur were extensions. For the completed products, the plug-in architec-
ture and the independency between plug-ins have shown their value in the
easy deployment of bug fixes.

Requirements remain an issue, though. AKVAsmart is still learning how
to cope with them easily. The requirements for the first release of Superior
Control.net have been in a flux. The main reason for this is that the first
version was limited, targeting a dynamic group of selected customers. As dis-
cussions continued and feedback from development arrived, it happened that
a company was taken out of the group. This meant that this customer’s re-
quirements were no longer valid for the first release. Similarly, other companies
would be added to the group, bringing their own requirements with them.

8.7 Outlook

Framework releases are planned to happen rarely. They will normally occur
only when a new product or a major new version of an existing product is re-
leased. Due to this, patches to the released framework will be avoided. Releas-
ing new or updated plug-ins is easier and will happen much more frequently.
It may be necessary to mask framework bugs in plug-ins. This has actually
happened when a bug in the framework was exposed by a single plug-in. Code
was added to the plug-in to hide the bug in such a way that the fix does not
trigger if it is run on a corrected framework. The developing framework was
patched, and will be released with the next version of the framework, when
the next product ships.

9

Bosch Gasoline Systems

with Christian Tischer
Birgit Boss
Mirjam Steger
Juha Kuusela

Company facts of Bosch Gasoline Systems

Organisational size: ∼ 1,000 developers.
Starting Mode: Strategic focus, based on existing assets.

Experienced improvements:
- Reduction of calibration effort (–20%) and maintenance.
- Reduction of the resource consumption (20–30%).
- Product line definition reflecting market variance.

Business: Addressing new business challenges was a major
driver. Three market segments were identified as a
starting point.

Architecture: A new software architecture was developed, but as-
sets were derived from the existing asset base.

Process: Bosch works on CMMI level 3. Systematic process
engineering provided an important basis for product
line development.

Organisation: A restructuring of the organisation was necessary
to reflect the different roles in a product line
organisation.

134 9 Bosch Gasoline Systems

9.1 Introduction

Robert Bosch GmbH is one of the largest automotive suppliers. The company
was founded in 1886 and works in the areas of automotive and industry tech-
nology. In 2005 the company had about 251,000 employees in more than 140
countries.

Within Robert Bosch GmbH the division for gasoline systems is one of the
largest organisations with more than 1,000 developers. As basically every new
engine control leads to a new variant, the total number of produced variants
is already in the range of thousands, thus providing a good basis for the
introduction of a product line engineering approach.

9.2 Motivation

Today’s automotive software systems must deal with a set of requirements that
is unique in the software community. While requirements on cost-efficiency
and variability are addressed in today’s software solutions, new challenges
like standardisation, software sharing and growing system and organisational
complexity must be faced. These changes require new approaches to find a
trade-off to satisfy these needs.

Figure 9.1 illustrates the increase in complexity of an engine control unit
in terms of resources, system components, features and software parameters
over the last 10 years.

In the past, the approach of Bosch Gasoline Systems1 to offer “best in
class” solutions was based on the development of a very powerful platform that

100% 100% 100% 100%

150% 140%

400%

170%

Sensors Actuators Calibration
parameters

Features

100%

1570%

Lines of Code Memory (MB)

1995
2005

100%

2400%

Fig. 9.1. Increasing complexity of gasoline engine control systems

1 From here on, the term ‘Bosch’ is used as a short hand for ‘Bosch Gasoline
Systems’

9.2 Motivation 135

included a broad range of functionality. With increasing product complexity
and product variants, the strong focus on a platform-based development shows
critical risks:

• High resource consumption
• Complex software integration and calibration procedures.

These risks may result in less competitive project and product costs.
The challenge of mastering increasing complexity at low costs, with high

quality and with shorter time to market was the main driver for starting
improvement initiatives for process and product excellence. To improve the
process maturity of the organisation, Bosch started a CMM-based process
improvement program in the year 2000, resulting in the achievement of CMM
Level 3 in the year 2002. With respect to product excellence, the company
investigated product line engineering in a parallel technology project. This
project aimed at evaluating product line engineering in the engine control
domain.

With respect to the automotive business context, the following character-
istics had to be considered:

• Car manufacturers are competent and demanding customers in terms of
functionality, quality and cost in a highly competitive market.

• Due to the specific customer relation (business to business), software re-
quirements have to be negotiated carefully for every product. The goal
of Bosch is to achieve an efficient implementation of the product require-
ments. The ability to sell predefined solutions is limited, depending on
the market segment, as the solutions are defined to a large degree by the
customer.

• The need of customers for differentiation from other manufacturers leads
to a great amount of customer-specific software. Increasingly, customers
require software sharing on object code level to protect their specific
know-how.

• Innovation by adding or improving functionality faster than competitors is
essential for car manufacturers. This leads to a continuous flow of change
requests from customers in all project phases.

• Engine control systems must cover a tremendous range of variants. As a
result, hundreds of program versions per year must be handled.

Product line engineering offered a comprehensive, systematic concept to
analyse and improve business strategies, product development processes as
well as technical solutions within the products.

The product line practice areas as defined in the product line practice
framework provided helpful guidelines for a common understanding of strate-
gies throughout the organisation [38]. This supported the required customi-
sation of product line engineering to the engine control domain. This helps to
achieve the demanding goals in line with the mid-term vision:

136 9 Bosch Gasoline Systems

Software is built from a common architecture and set of components
using a product line approach so that high-quality individually tai-
lored products can be built easily and predictably, using as few hard-
ware resources as possible, thereby reducing overall development costs.

These goals are as follows:

• Competitiveness
– Reduced hardware resource consumption (e.g. scalability)
– Reduced time to market for new features

• Development efficiency
– Reuse
– Easy configuration of software products
– Increased planning accuracy

• Quality
– Interface integrity
– Reuse of core assets

• Customer needs
– Differentiation by individual software solutions
– Clear feature-cost mapping

The experiences presented here are specific to Bosch, but they confirm
some essential general prerequisites for product line development such as
strong leadership, high management commitment and high process maturity.

9.3 Approach

Introducing product line engineering affects several practice areas of both
management and engineering. The interdependencies of the practice areas
require parallel change and improvement.

This section details the experiences concerning the influence of product
line engineering on the following aspects:

• Consideration of business strategy
• Consequences for the work products: software architecture and software

components
• Consequences for processes and methods
• Consequences for the tool environment
• Consequences for the organisation

9.3.1 Business Strategy

Market requirements were analysed in the context of strategic product port-
folio planning, leading to the definition of different market segments. Accord-
ingly, the former strategy of “one platform for all” was changed in a strategic
product line definition:

9.3 Approach 137

Basic-Motronic

Basic-Motronic E-Gas

Standard-Motronic

High-End-Motronic

Basic-Motronic DI

Standard-Motronic DI

High-End-Motronic DI
West-EU high
consumption
emission
price
driving pleasure

NAFTA
consumption
emission
price
driving pleasure

Asia
East-EU
price

West-EU
consumption
emission
price

Product Line 1
Feature X
Feature Y
Feature Z

Quality R

Product Line 2
Feature A
Feature B
Feature X ...

Quality S
Quality R ...

Fig. 9.2. Market segments and product line definition

• One product line for basic engine control systems
• Another product line for standard systems
• Single product development for high feature systems

Each product line has clearly defined features and qualities like hardware
resource restrictions or the sharing of software. For each product line, stan-
dard software, standard options and customer-specific software options were
defined. Some features will be sold separately as software product options.
This definition has strong influence on quotation and development activities.

Figure 9.2 shows the mapping of market, market segments and product
lines.

Other goals of the business strategy are common software for gasoline and
diesel systems and software sharing with customers.

These aspects have a strong influence on the software architecture and
process definition. They require exchange of data formats (MSR [151]) and
mechanisms, e.g. for know-how protection or interface management.

9.3.2 Work Products: Software Architecture

This section describes the development of a software architecture and the de-
sign of software components that fulfil the product line definition, the qualities
and address the business goals.

Figure 9.3 shows, in outline, the evolutionary path from the existing soft-
ware to the new platform. Starting point for the activities is the analysis of

138 9 Bosch Gasoline Systems

business
strategy

New platform maintenance

Market analysis & Scoping

market

Redesign

Initial change of SW-
architecture and platform

defines goals
and qualities

defines

Redesign

architecture
design

Redesign

feature
analysis

design

implemen-
tation

Platform
development

feature
analysis

design

implemen-
tation

Product
development

feature
analysis

design

implemen-
tation

current
platform

Fig. 9.3. The way to a new product line software architecture

market requirements and existing platform solutions. Driven by the product
line definition and the prioritised qualities, there is an initial phase that in-
cludes both the design of an adequate software architecture and a redesign of
the software components. The new architecture and the redesigned software
components provide the basis for product line maintenance.

The development was largely based on the existing asset base. Most of the
software components had to be restructured to fit into the new architecture.
This restructuring took three years. It had also positive side effects. It has
substantially reduced the resource consumption of the software (between 20%
and 30%) and has also proven to decrease the maintenance costs.

In the past, the engine control domain was mainly driven by functional
requirements. Consequently, non-functional requirements (qualities) were not
explicitly considered in the software architecture.

For the development of the new software architecture for the EDC/ME(D)
17-generation, the non-functional requirements were analysed, prioritised and
considered as main drivers for the design [66]. One of the main results of the
software architecture design is the static view shown in Fig. 9.4.

Some of the most important qualities and the design decisions used to
support them are listed below:

9.3 Approach 139

Fig. 9.4. Static view of the EDC/ME(D)17-software architecture

• Resource consumption (RAM, Flash and run-time) is very critical in em-
bedded systems due to its cost relevance. The main approach to achieve
resource reduction is the redesign of software based on feature analysis
using suitable variability mechanisms.

• Distributed development requires thorough interface management to achieve
stable and lean interfaces.

• Software sharing with car manufacturers is supported by the adoption of
layers in the software architecture. As a result, a software component in
the application layer is independent of how a sensor or actuator or the
micro controller works.

• The reuse goals are reflected in the architecture in several ways:
– The “Application Software (ASW)” can be used across different system

generations.
– The “Core” software is highly configurable and may be reused across

projects without software changes as only the configuration must be
changed.

– The “Vehicle Functions” can be used in the gasoline engine domain as
well as in the diesel engine domain.

140 9 Bosch Gasoline Systems

– The adoption of a layered software model with hardware encapsulation,
device encapsulation and application layer supports reuse of software
components.

• The standardisation of architecture gains increasing importance. Struc-
turing the application software according to the domain model and the
adoption of appropriate layers qualify the architecture as a good basis
for standardisation efforts. Bosch introduced their experiences in develop-
ing a software architecture for an automotive domain into standardisation
initiatives, especially AUTOSAR [8].

To evaluate the new software architecture the Architecture Trade-off Anal-
ysis Method (ATAM) [37] was used to check the architecture against business
goals, non-functional requirements and to identify risks and non-risks. The
risks have been used as a basis for continuous risk management. The experi-
ences show that ATAM predicts future problems fairly well.

9.3.3 Software Components

The redesign of existing software components focused on the qualities reuse,
simplification of calibration, optimisation of resource consumption and stable
interfaces. We will now describe the main activities in the redesign phase (see
Fig. 9.3).

• Analysis of existing software (feature analysis [54])
– Identify and document implemented features and variability in a fea-

ture tree.
– Check on the necessity of these features in the product line definition.

Eliminate these features or make them configurable. Document these
decisions in the feature tree.

– Document feature interdependencies (required, exclude) in the feature-
tree.

• Concept development and design of software components (software com-
ponent design)
– Use simpler physical concepts that fulfil the requirements sufficiently.
– Use a suitable variant mechanism to implement configurable features.
– Shift from functionality-driven to architecture-driven component

structures.
– Document relations between features and implementations to support

ease of configuration and product derivation.
– Define interfaces (as stable as possible).
– Document the interfaces of the software component as the basis for

interface management and consistency checks.
– Provide an “overview documentation” for the software component and

provide tailored documentation for the selected variant to give easy
access to the functionality.

9.3 Approach 141

• Baselines for different variants of software component (reference configu-
ration):
– Document baselines for variants of the software component. These

baselines are helpful for product planning, product configuration and
integration.

– After the initial development of these work products, it must be ensured
that they are kept up-to-date and are used in the development process
(e.g. interface management, product derivation and calibration).

9.3.4 Processes and Methods

The improvement of processes and methods was mainly motivated by the cost
and technology challenges. The product line engineering model [38] was used
as a systematic approach, a framework and a kind of “checklist” for existing
and future product improvement activities. It was not intended to cover all
product line engineering practice areas.

Although Bosch has had some form of platform development for years,
design and reuse were not systematic or driven by the business strategy. The
organisation had to become aware of the difference between this initial ap-
proach and the product line idea.

There were three phases:

• Phase 1 : investigate and customise product line engineering.
• Phase 2 : design and pilot adequate processes and methods.
• Phase 3 : roll-out and institutionalise in standard development process.

Phase 1: Investigate and Customise Product Line Engineering

The investigation and adoption of the product line engineering ideas was one
of the main tasks in the first phase of the project. Bosch applied the Product
Line Technical Probe to identify the starting point in terms of organisation
readiness to adopt product line engineering (strengths and challenges). The
probe gave valuable feedback about the organisational status, a comprehensive
analysis across roles and hierarchy levels and provided helpful recommenda-
tions for the next steps. There was reluctance to accept certain results: details
of the analysis must often be known to judge the results, and in contrast to
CMM assessments, the Bosch staff was not part of the technical probe evalu-
ation team.

Phase 2: Design and Pilot Adequate Processes and Methods

Methods and processes to address the challenges were designed and piloted.
One important step was to explicitly separate the tasks and work prod-
ucts for platform- and customer-specific development. Consequently, the fol-
lowing engineering process steps and technical management activities were
introduced.

142 9 Bosch Gasoline Systems

The following are the new engineering process steps:

• Feature-analysis
• Software architecture design
• Interface management
• Software component design
• Packaging / reference configurations

The following are the new technical management activities:

• Scoping
• Initial measurement for product line engineering-goals

Phase 3: Roll-Out and Institutionalise in Standard
Development Processes

For the roll-out and institutionalisation phase, it was necessary to enable the
organisation to live the new process steps.

Strong management commitment and attention was a key factor for success
in this phase. Other important enabling elements are shown in Table 9.1.

The roll-out of the new processes and methods is strongly linked with the
redesign of the existing platform software. There was a committed roll-out
plan, a steering committee and measurement program to support the change.
There was a risk that developers and management would focus on technical as-
pects of the implementation like resource consumption without paying enough
attention to piloting and institutionalisation of the new processes. To minimise

Table 9.1. Roll-out and institutionalisation in standard development process

Action: Roll out by redesign of existing platform.
Purpose: Initial development of work products like interfaces, feature trees,

overview functions, etc.
Helpful: Product line engineering coaches.

Action: Series of product line process workshops with middle
management.

Purpose: Understanding, acceptance and management support.
Helpful: Management commitment.

Action: Embody new process steps in standard development process.
Purpose: Visibility of product line engineering integration in process

infrastructure.
Helpful: Management commitment, existing process infrastructure.

Action: Training program for product line engineering and
architecture.

Purpose: Understand product line engineering and internalise new methods.
Helpful: Use of domain-specific examples.

9.3 Approach 143

this risk, special product line engineering-coaches provided initial support for
the developers to implement the new processes in a consistent way.

It was important to embody the new process ideas and process steps in the
standard development process. One initiative was a series of workshops with
the middle management to discuss the new processes and gain their acceptance
and support. Product line engineering must be visible in the standard process
even if the new process steps are not binding for the whole organisation. The
approach was rolled out gradually. A training initiative provided the necessary
skills by covering the software architecture and specific elements of the product
line approach.

9.3.5 Tool Environment

New tools and data formats were required to support the development and
maintenance of the work products and to fully benefit from the information
documented in the development process. Here are some examples for required
tool support (see also Fig. 9.5):

• Feature modelling
• Architecture documentation
• Interface documentation, interface checks and interface management
• Documenting the linkage between feature model and implementation
• Feature-based product derivation

Due to the lack of commercial tool support for these tasks, Bosch had to
specify and develop their own tools. The tool prototypes that were used in
the pilot phase were not very user-friendly and were not integrated in the tool
chain. In most cases, they required more effort to use than they could save.

Fig. 9.5. Examples of tool chains

144 9 Bosch Gasoline Systems

As a result, it was very difficult to motivate the pilot users to use these tools.
Based on the experiences with the prototype tools, requirements for the tool
environment were specified. The lack of tools leads to a delay of one to two
years for the process institutionalisation.

Another tool and data formats aspect concerns the need of sharing soft-
ware with other business units and with customers. Standardisation on data
format level is necessary. This standardisation does addresses not only the
code level but also architecture definition and interface description. To ad-
dress these aspects Bosch participated in standardisation initiatives like
AUTOSAR [8].

9.3.6 Organisation

The product line approach not only affects processes and work products, but
also has a strong influence on the organisation. One main prerequisite for suc-
cessful adoption of product line engineering is the assignment of the necessary
roles and responsibilities in the line and project organisations.

Consequently, adjustments of the organisation – derived from the software
architecture and the new technical development process – are in progress.

These include the following:

• Designation of specific groups for the sub-systems “Core” and “Complex
Drivers” (Fig. 9.4).

• Establishing a group responsible for scoping and architecture design.
• A clear separation of organisational units responsible for platform and

product development, reflecting the process definition.

9.4 Lessons Learned

This section describes some critical success factors in terms of the management
role and the process maturity of an organisation for adopting product line
engineering.

9.4.1 Management Role

Changing large organisations is a major challenge for management. The fol-
lowing covers some of the main management success factors in the product
line engineering improvement initiative at Bosch.

• Building up product line know-how at Bosch Research.
• Setting up a product line business unit project to investigate and customise

product line engineering.
• Roll-out product line engineering into the business unit organisation.

9.4 Lessons Learned 145

Building Up Product Line Know-How at Bosch Research

In 1995, a Bosch Research department manager adopted the software product
line vision for Bosch automotive software. Key success factor in his manage-
ment role were:

• building up product line know-how
• hiring appropriate software engineers
• piloting small projects within corporate research

Setting Up a Product Line Business Unit Project to Investigate
and Customise Product Line Engineering

A department manager for software development at Bosch learned about prod-
uct line engineering technology in Bosch Research. The following were the
important management factors:

• Setting up a project with the task to investigate and customise product
line engineering.

• Assigning a project manager with acceptance and standing in the organi-
sation as well as high perseverance. Keeping the team motivated to deepen
the product line engineering understanding, while dealing with resistance
in the organisation and steering it through a rapidly changing context was
a difficult mission.

• Staffing the team with representatives from several development depart-
ments (domain experts, software developer, software integrator, process
and tool experts) and consultants from Bosch Research.

• Having a powerful promoter in the middle management, who ensured
proper funding and who continuously communicated the product line en-
gineering vision to senior management and to the organisation.

Roll-Out Product Line Engineering into Business
Unit Organisation

As the project team delivers expected results, management decides to roll
out product line engineering in the organisation. That necessitates increased
management support. The vice president for system and software development
supports product line engineering:

• Product line engineering aspects are embodied in the policy deployment
of the software-development departments.

• Capacity is planned and provided to redesign the software according to
the requirements resulting from product line engineering.

• A steering committee for the project provides a communication link to
other department managers.

146 9 Bosch Gasoline Systems

At the same time, the project team communicates the ideas and ap-
proaches early and continuously to middle managers and key players on the de-
veloper’s level. This is a major success factor, because of the following reasons:

• In the business culture, consensus on and understanding of new processes
is very important for the involved stakeholders.

• Addressing key players on developer’s level ensures applicability of
methods.

A product line initiative potentially interfaces with every role in an organ-
isation. Therefore, proper and sustained management support can be seen as
key in every software product line.

9.4.2 Product and Process Excellence – Product Line Engineering
and CMMI

In order to establish an appropriate improvement strategy and to focus the
improvement effort, the following aspects have to be considered:

• Market competitiveness
• Product portfolio
• Complexity of products
• Complexity of organisation
• Process maturity

As described in Sect. 9.2, software for engine control units is developed for
a highly competitive market in regard to innovation, quality and price with
additional requirements for software-sharing between the original equipment
manufacturers and suppliers.

For an organisation working in a highly competitive market with a medium
or large product portfolio, a strong focus is required on product portfolio
management. If the organisation develops complex products within a complex
(e.g. distributed) organisation, a strong focus is required on process maturity.

In the case of Bosch, both statements apply. This leads to the demand for a
highly mature organisation and the need to set up a clear product management
that supports flexible reaction to changing market requirements.

Being aware of these needs, Bosch set up an improvement program con-
sisting of two major steps:

1. CMMI to improve the organisations process maturity.
2. Product line engineering to address software architecture and product

portfolio management.

Initially, the improvement strategy chose to put its focus on process ex-
cellence (CMMI) over product excellence (SPLE). Since process excellence is
the basis for successfully introducing a product line, CMMI was prioritised
to be the major process improvement program. The product line engineering
activities concentrated on the technical product definition and development

9.5 Summary 147

issues. Nevertheless, it was necessary to coordinate overlapping improvement
activities. In contrast to the CMMI program, it was not intended to cover all
practice areas of the Framework for Product Line Practice [38]. Product line
engineering was used as a framework and guideline but not as an assessment
relevant model. Major milestones of the CMMI improvement activities were
the achievement of CMM level 3 in 2002 and CMMI level 3 by the end of
2004. In the product line context, a Product Line Technical Probe (PLTP)
was performed in 2001, the software architecture was evaluated using the
SEI’s Architecture Trade-off Analysis Method (ATAM) in 2002. The most
important decisions based on product line engineering were the definition of
a second product line in 2003 and the restructuring initiative described in
sect. 9.3.1.

The existing process infrastructure based on the CMMI program was an
important prerequisite to institutionalise product line engineering. The fol-
lowing were the most important elements:

1. The improvement team for the technical development process. Team
leader was a senior manager of the software department and the initiator
of the product line project.

2. Definition of process owners (department managers) and process repre-
sentatives for the new process steps.

3. Documentation of the new process steps in the development handbook of
the software and calibration departments, accessible via intranet.

4. Adaptation of existing role definitions and definition of new roles, where
necessary.

5. Definition of control boards for product line and architecture issues.

The experience with the two co-existing improvement initiatives over
the past three years confirms the decision to put the initial emphasis on
CMMI [62], because the product line approach requires a stable, high ma-
turity process organisation to be effective.

9.5 Summary

In the past, the approach of Bosch for developing software for engine control
units was based on a very powerful platform development. Product line en-
gineering offered a good framework to further improve product and process
excellence and to meet the market requirements regarding quality and costs.
Product lines are based on architecture-driven development and therefore help
in mastering the increasing product complexity.

The main steps for the adoption of the product line approach for Bosch
were scoping, architecture definition and an evolutionary redesign of the ex-
isting assets. Scoping is now a part of the product portfolio strategy and is
used as a basic input for marketing, platform development and product de-
velopment. The software architecture supports the important qualities of the

148 9 Bosch Gasoline Systems

engine control domain like encapsulation, software sharing and reuse. This
qualifies the architecture as a good basis for standardisation. The product
line definition and the architecture were essential inputs for the redesign of
the existing software components.

The process organisation (set up in the CMMI program at Bosch), with
clear responsibilities for the different steps in the development process, sup-
ports the introduction of the new process elements and the systematic and
effective development and maintenance of the software assets. Evaluation and
adoption of the product line approach were supported by management in each
phase. Additionally, early and continuous communication of the concepts was
a major success factor for acceptance on middle management and developer
level.

Standardising software architecture and supporting systematic software
sharing without jeopardising other qualities will remain a challenge over the
next years. The lack of (commercial) tools for many activities is a major risk
for achieving the intended benefits and final acceptance within the organi-
sation. CMMI-based process improvement and the set-up of a product line
complement each other. The product line approach addresses product struc-
ture, development and composition. CMMI deals with processes, practices
and documentation. Together they have positively contributed to success in
a highly competitive market.

10

DNV Software

with Bjørn Egil Hanssen

Company facts of DNV Software

Organisational size: 100 developers.
Starting Mode: Common support for three production centres.

Experienced improvements:
- Common software foundation, the BRIXTMplatform.
- Shorter time-to-market, higher product quality and reduced life-
cycle costs.
- Stronger alignment across product lines, with respect marketing,
sales and development.
- Flexible configuration and integration of solutions in a customer
environment, including working processes, organisation and exist-
ing systems.

Business: Long-term vision and strategy, involving alignment
of production, marketing, sales, product develop-
ment, processes, platforms and architectures.

Architecture: Second generation BRIX platform.

Process: BRIX platform development process, alignment of
application engineering processes.

Organisation: Organisation was changed repeatedly to accommo-
date changes in the product line and its scope.
Domain and application engineering is done in sepa-
rate organisations.

150 10 DNV Software

10.1 Introduction

DNV is a globally distributed company with a network of 300 offices in
100 countries, and about 5,800 employees. It is among the world’s leading
providers of services for classification, certification and consulting related to
risk, safety and quality. The target industries are shipping, oil and gas, pro-
cess, rail, automotive and food.

DNV Software is an independent business unit within DNV providing
software products and customised solutions to the same industries, with more
than 3,000 customers in 55 countries. One of DNV Software’s major customers
is DNV itself. As of 2004, DNV Software has about 160 employees, and the
development is organised in three product centres and a common support unit
as shown in Fig. 10.1.

• SESAM: development started in the 1960s addressing the need for strength
assessments of large structures in the marine and off-shore industries. The
SESAM product line has gone through several technology shifts and major
reengineering projects. Today, the newer SESAM products are well aligned
on a common platform and architecture developed from 1995 to 2000, while
the older ones have a common platform from around 1980.

• Risk Management Software (RMS): started developing products for risk
and consequence analysis for the process and off-shore industries in the
early 1980s. In 1990, RMS was acquired by DNV. Today, the RMS prod-
uct line is quite diverse. It is the result of independent product develop-
ment projects. However, a common software platform for the mathematical
models has been established as well as a common software framework for
some of the products.

• Nauticus : started as a major development project in the early 1990s, ini-
tiated by the DNV Maritime business area to support and improve their
wide range of services for the marine industry, described in full detail
below.

Nauticus SESAM RMS

Software Factory / BRIX

DNV Software

Fig. 10.1. DNV Software’s development organisation: three product centres and a
common support unit

10.2 Motivation 151

The purpose of the Software Factory unit is to support the three product
centres in cost-effective development, maintenance and support of high-quality
software. The unit provides a software platform called BRIX, development
tools and methodology. Software Factory plays a central role in DNV Software
with respect to product line engineering.

DNV Software has known two generations of software product line en-
gineering. The first generation was performed at the product-centre level.
Development teams within each centre carried out product line engineering
to different degrees. The current generation is performed at the DNV Soft-
ware level. It aims to exploit potential synergies across the product centres,
similar to Philips’ product population approach [148]. This chapter reports on
DNV Software’s experiences with both generations of product line engineer-
ing. With respect to the first generation, it focuses on the Nauticus product
centre.

10.2 Motivation

The main business goals for Nauticus were

• more efficient, streamlined and higher quality services towards the cus-
tomers

• up-to-date information about vessels and fleet: globally available both in-
ternally and to customers throughout the life-cycle of the vessels

This required the establishment of a whole new range of IT services as well
as substantial changes to the DNV Maritime organisation and work processes.

At the system level the resulting major design criteria were as follows:

• Flexible configuration to meet the organisation’s need for evolution.
• Efficient global integration and reuse of both existing and new applications

and information across many disciplines.

Supporting the common needs of the Nauticus product line required a
substantial effort – close to 40 man-years – to establish BRIX, of a common
software platform. The first generation BRIX was based on Microsoft’s COM
technology [32].

At the end of the 1990s, the major software development units in DNV
were organised into one unit called DNV Software. The success of the product
line engineering approach as used in Nauticus did not go unnoticed. Great
potential for improvement at DNV Software was recognised with respect to
the following:

• Reducing life-cycle costs and shorter time to market.
• Creating products of higher quality that are more consistent across product

lines.
• Obtaining a higher degree of reuse and reducing duplication of functionality.
• Aligning the product centres and the product lines.

152 10 DNV Software

The common software platform approach was perceived as a key factor to
Nauticus’ success, and it was desirable to extend the scope of BRIX to all
DNV Software’s product centres to realise potential benefits.

In 2000, DNV decided to develop a second generation BRIX platform,
based on Microsoft .NET technology [95], aiming at supporting, aligning and
integrating all three product centres and the corresponding product lines.
These product lines have a high degree of commonality. There is variability
in several dimensions, e.g. disciplines, work processes, deployments and tech-
nical infrastructure. The long-term benefit of managing and supporting the
commonality and variability is potentially very high.

Although there is a high degree of similar features in their products, the
product centres differ in many ways: history and culture, technology, devel-
opment processes and maturity with respect to product line engineering. In
this context, the following are the major challenges:

• Achieving a common platform and technology alignment.
• Succeeding with in-house development for and with reuse.
• Making good decisions, balancing long-term and short-term needs with

respect to timing, cost, benefit and product life-cycle issues.

10.3 Approach

DNV has known two generations of software product line engineering. Both
will be described in separate sections.

10.3.1 First Generation Product Line Engineering

DNV Maritime set a high-level and long-term vision for Nauticus:

To establish a common information repository (”product model”) con-
taining or referring all information accumulated for an object, e.g. a
vessel, throughout its life-cycle. This should enable the transfer of
information on the object between all involved actors, including feed-
back of experiences accumulated during the objects life-cycle, for effi-
cient delivery of high quality services and for continuous learning and
improvement.

The vision was concretised and illustrated through a series of mock-ups.
These were used to share the vision within the project team, the customer
organisation and the top-level management. The project received full support
from the top-level management.

The Nauticus project started almost from scratch. Some applications ex-
isted, but most of the functionality to support the business needs had to
be developed or reengineered. Nauticus avoided the mistake to cement the

10.3 Approach 153

as-is customer organisation and working processes, opting for facilitating re-
organisation, business process reengineering and business development in-
stead. With respect to this, the architecture team foresaw a strong need for
flexible evolution, i.e. variation over time. Other major dimensions of variation
were

• Domains : from technical engineering applications to administrative infor-
mation systems.

• Deployment : from stand-alone to globally distributed deployment.
• Networks : from high-bandwidth LANs to low-bandwidth, unreliable WAN.
• Actors : many different actors, e.g. surveyors, managers, ship owners, au-

thorities, etc.

Nauticus development was organised into three sub-projects:

1. Tools : focused on delivering end-user tools, which supported the user in
carrying out specific tasks.

2. Common Ship Description (CSD): focused on establishing a common do-
main information model that defined all the data entities for Nauticus.

3. BRIX : focused on delivering a common software platform with develop-
ment tools support, covering the general needs for the whole product line.

The scope of the software platform was in effect determined by the dimen-
sions of variation and a key decision to base the product line on Microsoft
technology in general and COM specifically. However, the scope of the prod-
uct line itself was fairly open to allow future extensions within the constraints
of the common platform.

The BRIX software platform put constraints on both the Tools and CSD
sub-projects:

• Prescribed software architectures for tools development, with supporting
software frameworks and services.

• Common GUI guidelines for tools development.
• Precise semantics and syntax restrictions for information modelling in

UML class diagrams, with supporting code generation tools and run-time
services for data retrieval and persistence.

The BRIX platform development was driven by the needs of the Tools
project and an intuitive understanding of how to support the scope of the
product line. Although there was close interaction between the Tools and
BRIX sub-projects, BRIX had separate development and release cycles and
strict change management of the releases. Hence, the common software plat-
form was managed as a separate internal product and could be considered as
a third-party product by the Tools project.

BRIX development was organised as a set of projects addressing various
features in the platform. The project iterations resulted in the incremental
development of the platform. In the source control system, the development
projects worked on separate development branches and integrated back to the

154 10 DNV Software

main platform branch when a project or iteration was finished. This allowed
releases of the platform even during ongoing major developments.

The first generation BRIX platform was tuned for rich client-side func-
tionality and for deployment either in stand-alone or in a global WAN, also
including an off-line mode of operation. The platform had several important
mechanisms supporting the commonality and variability in the Nauticus prod-
uct line:

• Workflow : it supports the explicit representation of the working processes
in an organisation. A process is defined as a composition of isolated tasks.
There is an end-user tool supporting the user in performing each task. Of-
ten the same task will be done in different processes. Hence, the supporting
tools are reused in different process definitions.

• BRIX Explorer : it hosts the process instances and tools compliant with
the BRIX tool architecture, thus providing a common overall integration,
organisation and presentation of different applications. See the example in
Fig. 10.2.

• Common Information Repository and Services [6]: the database schema
and data access code is generated based on the common information
model, as described in UML. Combined with generic platform code this
provides the tools with a common set of services for accessing shared data.
This is an important mechanism for close integration of loosely coupled
tools.

Fig. 10.2. Nauticus desktop

10.3 Approach 155

Figure 10.2 shows a screen shot from Nauticus, with work process tasks
in the leftmost pane and an associated end-user tool to the right of it for
the current task, both hosted in the BRIX Explorer. The end-user tool is
composed of several sub-tools by utilising the tool framework’s support for
nested tools. In this case, at the bottom, a part of a ship design is shown.

In Nauticus a process definition may be considered as a product consisting
of tasks and associated tools. That is, a new product may be configured from
the common asset base by creating a new process definition. It will typically
reuse existing tools and require some new tools to be developed. New tools
may be specific for the new product or generally applicable across products
in the product line. This results in a high degree of development for and with
reuse, growing the base of reusable assets. The workflow concept with plug-in
end-user tools supports flexible variation in both space and time.

This flexibility is also supported in the customer organisation, allowing re-
organisation and business process reengineering according to improved prac-
tice and new business needs. When reengineering the business process, the
basic tasks to be carried out and the information needed for task execution
often remain the same, but the overall process changes, typically removing
administrative tasks. Thus, the domain information model and end-user tools
can still be used.

10.3.2 Second Generation Product Line Engineering

When DNV Software was established, the Tools and CSD sub-projects of
Nauticus became the Nauticus product centre. The BRIX sub-project became
the Software Factory unit, also strengthened with a group focusing on software
process improvement.

Although the original Nauticus development was carried out without
awareness of product line concepts and principles, the project organisation,
processes and organisation of software assets resemble many product line en-
gineering recommended practices.

Business, Organisation and Processes

Before the establishment of DNV Software, there was some collaboration and
attempts of alignment between the different software product units. Although
some significant integration was carried out, a lack of common management
support and commitment limited the results of these efforts.

When DNV Software was established, the new leadership wanted to
strengthen the integration and alignment between the product centres to in-
crease the business performance. The following were the two main means to
fulfil this objective:

1. A long-term vision and strategy for integration and alignment of the prod-
uct centres, both with respect to marketing and sales, product develop-
ment, development processes and software platforms and architectures.

156 10 DNV Software

2. Development of the second generation BRIX common software platform,
as part of the new strategy, extending the scope from Nauticus to the
whole of DNV Software.

Although the first generation BRIX platform was generic and domain inde-
pendent, it was not adequate as a future common platform for DNV Software
for several reasons:

• It was too comprehensive, proprietary and constraining, and did not pro-
vide possible migration paths for existing products; it required full reengi-
neering. Also, the platform enforced too many architectural decisions and
thereby excluded too many products from using it. Most importantly, it
had limited support for server-centric systems.

• Several components in the platform were difficult to use due to insufficient
quality, testing and documentation, in addition to the complexity of the
Microsoft COM basis technology.

• Microsoft had announced a major technology shift from COM to .NET.
That made it unattractive to invest in a COM-based platform.

Despite its limitations and weaknesses, the first generation BRIX was suc-
cessful. But with the extended scope of the second generation platform, new
variability requirements were added:

• More flexible workflow : should support both fixed, predefined work pro-
cesses as well as more dynamic, evolving work processes.

• More flexible deployment : across various infrastructures, e.g. stand-alone,
smart clients, off-line clients, web-clients, web-services.

• More flexible operation: across different trust boundaries, i.e. intranet, ex-
tranet and Internet.

The development of the second-generation platform took a revolutionary
approach, but the platform supported evolutionary adoption by products de-
velopers. Major concepts from the first generation were refined and reimple-
mented from scratch on the new .NET technology platform, as illustrated
in Fig. 10.3. To distinguish the two platform generations, the existing one
was renamed BRIX.COM while the new one was named BRIX.NET. When
BRIX.NET started, BRIX.COM was used across all of Nauticus and needed
to be supported for several years ahead, up to and including 2005.

No changes were made to the line organisation. The BRIX group had about
six to ten members at any moment, and a yearly budget for development and
maintenance of common software assets that was financed through the product
centres. In agreement with the management team, the resources in the BRIX
group were reprioritised for development of the new platform. Only support
and a minimum of maintenance were carried out for the existing platform.

The scope of the BRIX.NET platform was all of DNV Software’s products,
even though the product lines are very diverse. The platform was designed to
be open and inclusive rather than closed and exclusive. Business benefit was

10.3 Approach 157

BRIX.COM

BRIX.NET

2002 2003 2004 20052001

Fig. 10.3. BRIX.COM and BRIX.NET tracks

maximised by utilising the platform on all products to the greatest possible
extent.

The following were the main high-level design directions for the new
common platform:

• Non-enforced and under-specified architecture: it is not feasible to have
a common architecture for all products. Some parts of the architecture
will not be specified, leaving design decisions to the product development.
Other parts of the architecture will be specified, but are not applicable to
all products or are in conflict with specific product requirements. Hence
to accommodate these products the architecture is non-enforced.

• Modularised features : to allow the products to use only those platform
features that are relevant, it is important that the platform features are
loosely coupled and have a focused area of concern.

• Open and transparent : to allow product development to make specific ex-
tensions or substitutions, it is important that the platform is in line with
the underlying technology and does not add unnecessary layers of abstrac-
tion. In this case, the mainstream use of the Microsoft .NET technology
was promoted, sometimes just by providing guidelines for how to use the
technology instead of providing executable software components. This also
makes integration easier at all layers.

There was a need to build competence on the new technology, and the first
half year was mostly spent on technology studies and prototypes. After the
initial phase, several platform development projects were started:

• BRIX.NET Modelling and Data Access (MDA) services : to migrate and
enhance the BRIX.COM Common Information Repository and Services
layers and the information modelling approach.

• BRIX.NET Security: to specify infrastructure requirements and establish
a set of services for secure authentication but flexible authorisation of end-
users for access to product features.

158 10 DNV Software

• BRIX.NET Workflow : to establish a new set of workflow services accom-
modating the existing workflow solutions and future needs. As part of this,
a BRIX.NET Explorer was developed, providing client-side hosting similar
to the BRIX.COM Explorer.

As a result of these projects, a BRIX.NET-recommended architecture was
defined, specifying the logical layers and alternative physical deployments.
Several minor projects were also carried out to establish an efficient develop-
ment environment, including automatic build and test, exception handling,
logging, etc.

During the development of the second-generation BRIX there was a
stronger awareness of the importance of running platform development projects
parallel to and in close co-operation with one or more product development
projects. This allowed progress in the long-term direction while providing
short- to mid-term business value. Many good ideas for common assets may
be suggested, but if there are no product development projects to use and
validate an idea, it should be postponed or rejected. Otherwise, a substantial
investment will be made with uncertain long-term return. Common assets do
not have any business value before they are used in a product that is sold
to a customer. As in all software development, it is difficult to develop useful
common assets without real requirements and customer involvement.

Architecture

The major components of BRIX.NET, as shown in Fig. 10.4, provide impor-
tant variation mechanisms. The figure depicts the major BRIX constituents
and which layers of the high-level architecture they support.

BRIX.NET MDA is a model-driven data access architecture. It supports
the generation of databases and data access layers from information models,
Fig. 10.5. It is inspired by OMG MDA [100]. The information models are
expressed in UML class diagrams.

BRIX.NET MDA provides the following variation mechanisms to support
commonality and variability across a product line:

• Basic models and view models: a basic model is a model for which
there exists a persistent (database) implementation. Information qual-
ity and maintenance are key issues for basic models. A view model is an
application-specific view on information that is derived from one or more
basic models.1 The distinction between basic models and view models al-
lows a product line to share a database model – e.g. the Nauticus Common
Ship Description – such that each application can have one or more private
(view) models with its own customised view of the data.

• Role models: the use of role modelling for information modelling [5] is novel
and different from role modelling in general [83, 56]. It is characterised by

1 The relationship between basic and view models is more formally described in [4]

10.3 Approach 159

Modelling &
data access

Presentation layer

Security

Business layer

Workflow

BRIX

Business logic

Data access

Database &
document storage

Presentation

Architecture layers

Fig. 10.4. Major BRIX constituents in relationship to the architectural layers

generate

generate

generate

generate

Application specific
view models

Shared
basic models

Information modelling

Data retrieval Data update

Business logic

business logicpresentation

Data access layer

View layer

Logical layer

Physical layer

tables, keys, indices

Client
(win/web)

Application
server

(.Net/C#)

DB
server
(SQL)

UML model
(e.g. Rational Rose

UML model
(e.g. Rational Rose

XSD
Schema

functions
Insert/update/delete
stored procedures

views functions
Insert/update/delete
stored procedures

XML
files

C# update
wrapper functions

C# update
wrapper functions

Typed or
untyped
dataset

views

Fig. 10.5. BRIX.NET MDA

160 10 DNV Software

being conceptually trivial and easy to implement, but nevertheless useful
in a pragmatic model management setting. The essence is that a partic-
ular information object can play any number of roles, simultaneously or
over time, and each role has a set of properties corresponding to, e.g.,
a UML class or a database table. An object is linked to its roles via its
unique object identifier. Role play and inheritance are similar, but a key
distinction is that role play is dynamic while inheritance relationships are
static for the objects involved. The use of role models allows development
of pure general models with a well-defined area of concern to be shared
across a product line. In a specific product, these can be combined with
product-specific role models to cover the extra need for information.

• Model-driven development: a model-driven approach accommodates vari-
ability with respect to generating implementation for different target tech-
nology platforms, like Microsoft SQL Server and Oracle. It also supports
commonality across the whole product line by using the same conventions
and best practices during generation. Variability is served by using differ-
ent conventions and best practices, especially as these evolve over time.

• Physical versus logical database layer: the clear separation between phys-
ical and logical layer allows schema changes on tables, views, procedures,
indexes, keys, or similar for performance or scalability purposes, while
maintaining a stable logical layer as long as the database semantics are
unchanged. The physical layer can be optimised differently in different
products and installations according to specific needs in product or instal-
lation.

• Logical versus view layer: Corresponds to basic versus view model at the
implementation level.

BRIX.NET Workflow supports flexible and dynamic product configuration
according to organisational needs [31]. The configuration is achieved by defin-
ing process templates consisting of sub-processes and activities with associated
end-user tools. This gives good support for commonality and variability both
in product development, configuration and its use in a customer organisation:

• Breeding and sharing of best practices in a customer organisation: process
templates are shared across an organisation and can be evolved as the
organisation learns, allowing commonality and variability over time.

• Sharing of sub-processes: the same sub-process can be reused in different
super-processes, thus supporting commonality and variability in super-
processes.

• Open super-processes : a super-process template can be incomplete, i.e.
some sub-processes have to be defined after instantiation. This allows
variation at process instance level, by either dynamic definition of a sub-
process or reuse from existing predefined sub-processes.

• Binding to end-user tools: the same tool can be reused in different process
templates. Also, the same logical activity in different templates can be
associated with different tools, e.g. to allow local variation. Hence, the
explicit representation of associations between tools and process activities
supports both commonality and variability.

10.3 Approach 161

• Integrating with third-party applications: process activities may also be
associated with third-party applications, allowing product configuration
and integration with other applications in the customer’s organisation.

The combination of the above variation mechanisms allows variability in
both space and time, both across a product line and for a specific customer
installation. In simple cases where the necessary end-user tools already exist,
a new product can be configured by defining a new process template.

BRIX.NET Security provides a set of services and an infrastructure spec-
ification that supports secure authentication of users and flexible authori-
sation to applications and products, especially when deployed on extranet
or Internet. To some degree it also supports licensing through the autho-
risation mechanism. BRIX.NET Security supports the following commonal-
ity and variability, also illustrated in Fig. 10.6. A product contains one or
more configurations of services. A service is associated with one or more
features. An organisation has a number of users being member of one or
more user groups. An organisation buys one or more products and differ-
ent user groups are authorised to use more or less of the product’s service
configurations.

• Sharing of features (services) in different security contexts: a product con-
tains one or more security configurations of services. This allows sharing
of features in different products and security configurations and also prod-
ucts and security configurations to evolve, e.g. introducing a new feature
in an existing product as part of an upgrade.

• Flexible configuration of authorisations: a user is member of a number of
groups, through which he or she is authorised access to a set of features
through a number of security configurations.

The configuration of authorisations is also used by Workflow for authori-
sation of users to carry out different activities.

UserGroup

User

Configuration

Service

Product

*

1

*
*

*
*

*
*

*
*
*

1
**OrgUnit

Fig. 10.6. BRIX Security information model

162 10 DNV Software

“External”

Web-Services

Biz Object

Data access

Web-services

Browser

Web-
presentation

Biz Object

Data access

Web-clients

Windows

Windows

Biz Object

Data access

Off -line Clients

Windows

Windows

Biz Object

Data access

Stand -aloneWin-clients

Windows

Windows

Biz Object

Data access

Web-Services

Server -side Client -side

presentation presentationpresentation

Fig. 10.7. BRIX supported deployment models

The BRIX.NET-prescribed architecture supports commonality and vari-
ability with respect to deployment models. At the various layers, components
may be reused across different deployments suitable for different infrastruc-
tures, as illustrated in Fig. 10.7.

The mainstream use of Microsoft .NET technology in BRIX.NET sup-
ports integration on all layers, with both third-party components and exter-
nal systems. This makes the products more adaptable to variations in their
deployment environment, e.g. what other systems exists.

BRIX.NET has no dependencies on BRIX.COM, neither development time
nor run-time, but end-user tools based on BRIX.COM may be hosted in
BRIX.NET. Hence, products based on BRIX.COM may choose between an
evolutionary or revolutionary migration to BRIX.NET. This makes it easy to
terminate BRIX.COM when it is no longer needed by any products.

10.4 Results and Impact Evaluation

Nauticus was initiated by DNV Maritime to support their business services.
The major roll out of Nauticus applications in the period 1997–1999 has had
several direct impact on DNV’s Maritime business.2 The efficiency of services
has increased, e.g. approbation time of a mid-ship section has been reduced
from three months to three to four days. Many administrative tasks have

2 In addition to the Nauticus system, a new IT infrastructure has been established
in DNV, and DNV Maritime has developed its business and organisation. These
changes also contributed substantially to the above business achievements

10.4 Results and Impact Evaluation 163

been eliminated and the technical tasks are carried out faster. The increased
volume and richness of the services have been handled without increasing the
number of staff.

After initial resistance to change, Nauticus users are very satisfied and now
consider the system essential to their business. Nauticus is also an integral part
of DNV Maritime’s marketing profile.

The Nauticus product line is fairly complex, and the approach taken in
the first generation was crucial for managing this complexity and supporting
the needs for commonality, variability and integration. The approach allowed
different development teams to focus on their area of concern. The BRIX
team focused on non-functional requirements and common platform support,
the CSD team dealt with domain information modelling and the Tools team
worked on functional requirements.

All Nauticus development was done using the common platform, resulting
in a uniform look-and-feel, uniform code, easier reuse, maintenance and inte-
gration. However, maintenance was still expensive due to the complexity of
the basis technology combined with varying quality and transparency of the
BRIX.COM platform.

The second generation product line engineering was driven by the business
needs of the newly established DNV Software unit, while still including the
ability to serve DNV Maritime as a key customer.

It was based on the experience with the Nauticus development. The
BRIX.NET platform has several important characteristics distinguishing it
from the BRIX.COM platform. It has a non-enforced and under-specified ar-
chitecture, more modularised and orthogonal features, and is open and trans-
parent. The results of these changes are as follows:

• Faster return on investment : application developers can utilise what is
available in the platform and do the rest on the application level.

• More inclusive: easier acceptance and adoption in the SESAM and RMS
product centres. Currently, there are major migration activities both in
SESAM and in RMS that move existing features to BRIX.NET. For
example, SESAM Workflow will be replaced by BRIX.NET Workflow;
an RMS product was partly ported to utilise the support for Oracle in
BRIX.NET MDA; a higher level domain-specific framework for risk and
consequence analysis applications is being developed based on BRIX.NET.

As a side effect, the BRIX platform has also been adopted by application
development projects in other parts of DNV.

As discussed in Sect. 10.3.2, BRIX.NET Workflow and BRIX.NET Secu-
rity provide important variation mechanisms, allowing flexible configuration
for a specific customer and reconfiguration during operation. This flexibil-
ity of the DNV Software product lines has also become a central marketing
concept. “Best Engineering Practice” [48] refers both to DNV’s high compe-
tence in different industries and to BRIX Workflow’s support for breeding
best practices.

164 10 DNV Software

10.5 Lessons Learned

Key success factors for both the first and the second generation product line
engineering have been the establishment of a shared long-term vision, strong
management support and leadership and commitment and endurance in the
development organisation. Sven Ullring, CEO of DNV from 1985 to 2000,
stated that the development and implementation of Nauticus was the achieve-
ment he was most proud of during his CEO period.

During both the first and the second generations of product line engineer-
ing, platform development has been organised in a separate unit with its own
resources and budget. This has been important in order to set and maintain a
long-term strategy, and to allow for platform investments exceeding budgets
of single product development projects. BRIX is currently financed through
the product centres. This is an incentive for the product centres to utilise the
platform as far as possible.

From the first to second generation there have been essential changes in
the approach to BRIX development. All platform development is now car-
ried out in close co-operation with product development. This validates the
platform features against real needs and also gives a more rapid return on
investment through use in the products. BRIX resources spend substantial
time in product development projects to secure proper adoption of the BRIX
platform.

It is important to be realistic about development for reuse and to push
development with reuse. The first generation product line engineering in Nau-
ticus was successful both in reuse of the generic BRIX platform and in reuse
of domain functionality (tools) between products. However, there was a näıve
belief in the reusability of tools just because they could integrate in the same
framework. To some degree too much effort was spent on development for
reuse without actually achieving reuse. Now, more conscious and clearer de-
cisions are made on when to develop for reuse, considering feature maturity,
feature commonality, short- and long-term costs and benefits, time to market
and resources available. A feature may well be developed specifically several
times and later possibly generalised. Once the investment in a reusable feature
has been made, its reuse should be strongly promoted.

Organisations should invest in training courses for major domain assets,
like common platforms. To promote the use of the BRIX platform, there are
BRIX training courses, for both the first and the second generation. This has
been very valuable both to quickly make new developers productive and to
reduce the number of support requests to the BRIX team.

When starting the second generation BRIX development, the vision was
to provide a common product line architecture for all software development
in DNV Software. This vision was not sufficient to meet short- to mid-term
needs for integration across the existing product lines. It is not realistic to
migrate all existing products to the same implementation platform for the
sake of easy integration: it is simply too expensive. Rather, products should

10.6 Outlook 165

evolve on their existing architectures and technologies as long as they are
able to serve the needs of their customers cost-effectively. Eventually, they
are to be reengineered or migrated to a new architecture. So, other means for
integration were needed and the vision was revised:

• To establish a DNV Software product line architecture for all development
based on .NET technology.

• To establish a common DNV Software service–oriented architecture for
internal integration between product lines and external integration with
customers or partners.

A project is currently running to define the DNV Software service–oriented
architecture. It mostly deals with the internal standardisation of things like
message formats, invocation mechanisms, security control, and also with how
to integrate in the BRIX Workflow, which is a central framework. Products
will comply by using the prescribed BRIX architecture.

10.6 Outlook

Currently, the product centre organisation has not been able to address the
complete potential for alignment of domain assets in all parts of the organi-
sation and there is still too much parallel development. To address this and
to achieve better coordination in general, DNV Software was reorganised at
the beginning of 2005, as shown in Fig. 10.8. Product centres reorganised to
achieve better coordination of marketing and sales activities and alignment of
domain functionality.

The Software Factory unit will still be developing BRIX. The Products
unit will develop products for mass sale, while the Solutions unit will do

DNV Software

Sales

Solutions

Products

Software Factory

Fig. 10.8. New DNV Software organisation

166 10 DNV Software

Solutions

Products

Software
Factory

Domain

engineering

Application

engineering

Fig. 10.9. Domain and application engineering effort

custom development, with extensive reuse of software assets from BRIX and
Products. The level of domain engineering versus application engineering in
the different units is illustrated in Fig. 10.9. Development in the Solutions
unit is typically application-specific, more domain engineering in the Products
unit, while SoFa/BRIX mostly does domain engineering. This also reflects the
time perspective of the development, the Solutions unit look for short-term
opportunities, the Products unit has a mid-term focus and Software Factory
aims for long-term alignment and integration.

It still remains to be seen how the new organisation will perform. However,
product line engineering has been central in DNV Software’s product devel-
opment through two generations, especially from the common platform and
technical side, and increasingly also from a marketing and sales perspective.
It looks like it is going to stay that way.

11

market maker Software AG

with Martin Verlage
Thomas Kiesgen

Company facts of market maker Software AG

Organisational size: 25 developers.
Starting Mode: Strategic focus, development from scratch.

Experienced improvements:
- Reduction of time to market: 2–4.
- Break-even: after about five products.
- Reduction of maintenance costs: ∼60%.
- Reduced cost of quality (reliability in the field).

Experienced side-effect:
- Increased issue resolution time.

Business: Product line engineering was a key strategic element
in addressing a new market segment.

Architecture: A new reference architecture was developed. Assets
included open-source and in-house components.

Process: The shift to product line engineering led to a trans-
formation of certain established roles and the addi-
tion of new ones.

Organisation: From the start a new organisational unit was set up
for product line development.

168 11 market maker Software AG

11.1 Introduction

It was in the year 1999 when a newly formed team at market maker Software
AG,1 Kaiserslautern, Germany, began to develop a software product line for
managing and displaying stock market data and financial market news. Start-
ing from a sound basis of domain knowledge in that area, the developers were
expected to create a set of new products on a technology-based new market
maker. The basic idea was to use web technology as a common infrastruc-
ture in all applications for delivering services to customers, as it was the time
of the “Internet hype”. It soon turned out that the company had to change
both the processes and the organisation of software development. More dra-
matically, the way of thinking about product definition changed. This chap-
ter summarises the changes made to the processes within market maker and
the lessons learned over the past five years, when the product line idea was
introduced.

11.2 Motivation

market maker is a small-sized company in the south-west of Germany. At the
end of 2004, market maker employed about 60 people, from which around 25
developed software for several product lines. The annual revenues continually
grew and are now at €5 million per year. market maker’s business is domain-
centric, meaning that all products and services focus on stock market data
including financial news. The job is to collect data from numerous exchanges
and contributors, validate and store it, analyse, aggregate, repackage and dis-
tribute it. The data is delivered as raw data as well as displayed in client
software developed by market maker. Revenues come from software licenses,
data subscriptions and service provisions.

New products are based on the experience the company has gained over 15
years of developing software for stock market data analysis. This was especially
important in 1999, when markets were boiling and the demand for innovative
products was immense. Not knowing exactly what customers – e.g. banks or
independent asset managers – would ask for the next month, one thing was
clear: the market for web-based products would become too important to be
ignored. Thus, future products had to be based on web technology. Although
the company had little experience in this field, the decision was made to
invest in this area. Right from the start the new products were considered
a product line. All products in that product line would share configurable,
customisable and tailorable components in order to save development power
when creating similar products for different markets and customers. Thus, the
“i*ProductLine”2 was created.
1 From here on, the term ‘market maker’ is used as a short hand for ‘market maker

Software AG’
2 Pronounced “i-star”

11.2 Motivation 169

In mid-1999, market maker was growing rapidly. Its main software prod-
uct then was an application which consisted of a set of specialised tools for
managing, analysing and displaying stock market data and news. The tools
were packaged and sold as modules. However, the software always contained
the complete functionality; packages were simply activated by means of a key.
The product was written in Borland Delphi and C++. Access to databases
containing all relevant data was available on subscription. The main product
and the databases embodied 10 years of experience in the application domain.
A major release was available at least once a year. A software development
team was constantly working on the product.

Due to technological developments and the “Internet hype”, market maker
decided to enter the Internet market too. As no one knew exactly which
products had to be built, the question arose: How to determine future assets?
At this time, the idea of employing a product line approach was born. In those
early stages, some key decisions were made:

• To use a component-based approach in order to quickly build products
from validated blocks and to allow for flexible development.

• To build a new team to cope with new technology demands.
• To finish first projects within twelve months.
• To build products without spending too much time on individual projects

and maintenance in order to set people free for new projects.

At that time, the company was in close contact with the Fraunhofer In-
stitute for Experimental Software Engineering (FhG IESE). FhG IESE was
then researching a new approach to product line engineering called PuLSE
[122, 19]. Co-operation was attractive for both partners: market maker did
not have a research department that could tailor an immature approach to
the company’s specific needs, and FhG IESE was interested in having a vali-
dation partner for their novel approach.

Today, the i*ProductLine is instantiated for various markets: information
systems for asset managers in banks, market data servers integrated in bro-
kerage systems for online ordering, specialised data display services for metal
traders and grains and oilseed traders, content provisioning for financial web
portals, data aggregation and delivery to batch processes for risk assessment in
financial institutions and image production showing price charts of shares and
other securities for websites. Most parts of the product line are implemented
in Java 2, with small parts written in C++. Sample product instances3 are
as follows:

• WIP : a platform for tailorable public Internet websites offering stock mar-
ket data and news.

3 In 2004 market maker was acquired by Vereinigte Wirtschaftsdienste GmbH
(vwd). This led to a renaming of these products to vwd web manager, vwd mar-
ket manager (web), vwd data manager (xml), and vwd portfolio manager (web)
respectively

170 11 market maker Software AG

• INFO-AGENT : a web-based information service for bank employees who
advise customers, or who need to look up market data.

• XML-Market : an XML interface to the data services used by banks for
real-time portfolio evaluation, display of data in web services not operated
by market maker, and delivery of small pieces of data for special-focus
services operated by third parties.

• Publisher : a service for extracting raw or evaluated portfolio data which
then are stored on a secure web server that only registered users have
access to.

Figure 11.1 shows a screenshot of the “INFO-AGENT” product which is
used by bank employees for retrieving stock market data in order to inform
customers with regard to specific questions about their investments. The field
labelled “Kurse” in the top left-hand corner contains information on the cur-
rent market situation; the same data are displayed in the chart to the right
of this area. The box in the top right-hand corner contains news headlines re-
lated to the company. In the bottom left-hand corner, a historical chart shows
the price development over a period of several months. The field labelled
“Stammdaten” contains stock-related data, e.g. the ticker symbol used by the
exchange where the stock is traded, or the International Stock Identification
Number (ISIN). The bottom right-hand corner shows consensus estimates for
that stock, e.g. earnings per share.

The set of data is a unique aggregation for one particular product. Other
products may require different data sets, hence variability must be provided
by the data management components of the i*ProductLine.

Variability within the INFO-AGENT product relates to several dimen-
sions. For every customer, the following features are configurable:

• Skin: appearance of the web pages (colours, fonts, graphical items and the
position of data items on the page)

• Data universe: customers subscribe to single data packages, access is
granted only to these sets.

• Data quality: for real-time trade data, customers have to pay license fees
to the exchanges. Often this data quality is not required, so the system
delivers delayed data, which is less expensive.

• Functionality: advanced INFO-AGENT features, e.g. the advanced search
function, or price data charting, are available at a higher charge.

These variabilities apply to a very small set of similar products only. Other
products differ more fundamentally.

Services, that are provided by the products, are either anonymous or re-
quire user authentication to build up sessions during data access. Protocols
provided for data access are HTTP, FTP, JDBC and SOAP. Data is delivered
in raw ASCII, HTML or PDF format, in binary formats of spreadsheet appli-
cations, and in portable networks graphics format. Stock market data streams
into the system at rates of several thousand updates per second. Databases

11.2 Motivation 171

Fig. 11.1. Screenshot of INFO-AGENT, an i*ProductLine product

172 11 market maker Software AG

from more than a dozen content providers are accessed for importing data or
deriving more aggregated data by computation. Availability requirements for
certain services may exceed 99.9%. These facts should give an overview of the
demands on the system.

The reference architecture covers approximately 25 coarse-grain compo-
nents, like user data management or real-time stock market data process-
ing. Components live in a general-purpose container which is responsible for
providing context, instantiating, starting, pausing, stopping and connecting
components.

11.3 Adoption Process

When the decision was made that the new products would be part of a product
line, some issues turned up, either implicitly or explicitly, which later proved to
be important to the success of the product line. This section describes some of
them which are also important for understanding changes to the organisation
and the processes.

11.3.1 Fast Time to Market

Soon after the start of the project, the first business talks with potential
customers began. The developers knew that the first product instance had
to be delivered within 12 months after the start of the project. This pres-
sure helped to take decisions when the reference architecture was discussed.
Domain engineering is customer-distant by nature, so there was a danger of
over-engineering the software and never finishing it. Any product line engi-
neering effort should carefully define criteria for the end of development.

11.3.2 New Team

All i*ProductLine developers were newly hired. They had no history in ear-
lier market maker products, and their attention was not distracted by other
projects. Nevertheless, the new development team was integrated very closely
into the company so that they could benefit from the domain expertise of their
colleagues. Lots of discussions gave developers from other projects the oppor-
tunity to review the current status of the development work and to share their
experiences regarding special cases. On the other hand, the i*ProductLine
developers helped to identify implicit assumptions embodied in the legacy
systems, which were used as encapsulated components in the i*ProductLine.

11.3.3 Early Focus on Applications

The primary tasks were to identify requirements by scoping and to define the
reference architecture. Emphasis was put on the technological aspects when

11.3 Adoption Process 173

the spectrum of requirements was clear. Domain engineering was stopped, and
a first product instance (the INFO-AGENT application shown in Fig. 11.1 on
p. 171) was built which served as a prototype for testing the ideas for the
product line. The immediate testing of the reference architecture helped to
identify and remove design flaws early.

11.3.4 No Separation of Domain
and Application Engineering Teams

In order to avoid the isolation of ideas and to enable feedback from initial
product line customers, there was just one team performing both domain
engineering and application engineering activities. Domain engineers could
observe their components in real life and determine further requirements.

11.3.5 Encapsulation of Legacy Systems

As the company-owned software had matured for more than ten years, it was a
booster for the project to define interfaces that encapsulated these components
and integrated them into the overall system. This way, the legacy software
helped to concentrate on the main issues when developing the product line.
Later, some legacy systems were substituted by code written from scratch.

The legacy systems written in Delphi were encapsulated by Java wrappers
which communicated with the components’ COM interface. The wrappers
helped to easily integrate the legacy components into the overall system. No
development effort had to be spent on domain issues; nevertheless, some effort
went into the technical solution, since Java and Delphi/COM were not as
easily integrated as supposed in the beginning.

11.3.6 Simple Architectural Style

Due to the complexity of application servers and high license fees for com-
mercial application servers, the components of an early version resided in a
self-developed container. Inversion of control was chosen as a main archi-
tectural style i.e. the component is controlled by its container and does not
maintain its own state. Later, this turned out to reduce maintenance effort.
Communication between components is based on Java Remote Method Invo-
cation (RMI) which is used to establish an asynchronous, SEDA-based style4

to address high-performance requirements. This architectural style allows for
high scalability. The whole system can run on several real machines; each
machine is allowed to host multiple containers, and each container may carry
several components of the same type. The components are instantiated and
connected using configuration files.

4 More information on SEDA can be found in Sect. 11.4.2, p. 179

174 11 market maker Software AG

Using Java interfaces consequently helped to adjust components to differ-
ent contexts. By means of instantiation parameters, components are tailored
to show a specific behaviour for a single product instance. Moreover, parame-
ters determine which of a component’s interfaces will be used. This helped to
design interfaces for special purposes rather than populating a single interface
with methods and method variants.

11.3.7 Effective Communication

Defining product instances, caring for their development and pushing them
into the market was done by a small group of people. The main task was to
share the vision of the new product line and its instances among all employ-
ees. Decision makers directly communicated their ideas to the developers and
got immediate feedback on the feasibility. Experienced sales people helped to
scope the product line and shared their knowledge about the way customers
think. The development team was not left alone with decisions concerning the
flexibility of components, which compensated for the partial lack of domain
knowledge. Differences in the understanding of requirements and software
could be determined in regular meetings, and conflicts arose rarely.

11.3.8 Immediate and Reliable Decisions

The vision of the new product line was developed in response to changing
market demands and new technologies. All decisions made during the devel-
opment of the i*ProductLine could be measured against this vision. It was
clear which directions were reasonable for the projects and how to prioritise
the projects. Everyone in the team knew why a certain decision was taken,
and that it was consistent with the vision. Reliable decisions were important
to keep the team motivated and focused.

11.3.9 Coaching

The research co-operation with FhG IESE helped to tailor the PuLSE ap-
proach and to get coaching during the application of the new knowledge.

11.3.10 Small Investments

The pressure of immediate market introduction helped to drive the projects
into a direction where success and potential gains could be analysed early
within twelve months. Especially for small companies, it is necessary to prove
within a short timeframe whether an investment in a new technology is suc-
cessful or not.

11.4 Current Process 175

11.4 Current Process

From a business perspective, the introduction of product line engineering at
market maker was quite successful. The i*ProductLine produces a significant
share of the company’s revenues and helps to increase business. Although it
is impossible to measure the effects of the new technology exactly because of
the uncontrolled setting, and because data from previous, similar projects is
not available, management estimates can provide a rough understanding of
the improvements.

11.4.1 Business

Today, setting up a new website for displaying stock market data takes only
a couple of days, compared to the weeks it took in the beginning. During
scoping and requirements definition, it turned out that layout and design is
a crucial factor for customers. The architecture reflects this, and open source
packages like Velocity [150] help to quickly define and change the appearance
of web pages. According to our estimates, this reduced initial project time
and effort by more than 50%.

Understanding product instances as flexible, interacting components helped
to win projects market maker never targeted before. Instead of building a
product and offering it on the market, individual projects were identified in
co-operation with the customers.

The overall cost, not including the cost of learning product line engineer-
ing itself, but covering the initial investment in the product line, has paid
off. Gains are primarily caused by reduced maintenance costs. Especially, the
variety of products would be too expensive to maintain without a product
line approach, so that only some would be updated, while others would be
left unchanged. When creating a product, the average cost reduction is esti-
mated at some 30%.5 In general, controlling projects differs because the effort
of overall activities, e.g. refactoring in order to keep components structurally
clean, has to be assigned to each product instance.

Quality itself, understood as reliability in the field, did not change in com-
parison to the “traditional” way of development since the developers have
always strived to deliver high-quality software. What did change dramatically
was the cost of quality. Building product instances on a foundation of already
tested components saves time and money, which in turn justifies higher efforts
in product line engineering for impact analysis, complex design and coding.

11.4.2 Architecture

The latest version of the system contains about 500,000 lines of Java 1.4 code
in about 2,000 classes. The architecture of the i*ProductLine is organised in
5 Excluding the first five projects, which were less efficient due to learning and

process optimisation

176 11 market maker Software AG

layers, so that a traditional multi-tier system is built. Each layer consists of
a number of component instances which reside in a common framework to
control and bind them. Variability of the overall system is mainly controlled
by instantiation parameters of the components. The instantiation parameters
are specified in central configuration files which are passed to the components
while creating them. One of the components is the “chicago” component for
data processing, which will be described in detail now.

The component processes financial information related to stock market ac-
tivities. This information is read from a number of data streams from different
sources (feeds). Here, we limit our view to the price feed that contains mainly
trading information such as bid and ask prices, trade prices, volumes, etc., but
also information about securities such as security names and ISINs. The feed
arrives as an ASCII-character stream to be read from a socket. Data records
in the stream represent a certain type of information (incremental or complete
update, delete of a record sent previously, etc.), a unique security identifier
(vendor-key) and a number of key-value pairs representing the actual update
information. Depending on the record type, only a subset – usually a small
subset – of the several hundred defined field keys is present. Secondary infor-
mation can be derived from the feed, including indicators such as volatility
and more complex calculations.

The main task of the chicago component is to store primary and secondary
feed information and to make that information available by means of some
application programming interface. Data is stored as soon as it arrives.

It is important to distinguish between real-time and delayed stock data,
because access to real-time data is in general more expensive. For delayed data,
the amount of delay usually depends on the stock exchange that distributes
the data. For each instance of the product line, we have to decide whether it
should store and provide access to delayed or real-time stock data, or both.

The product line’s non-functional requirements are dominated by per-
formance, throughput and scalability. The data volume of the security feed
reaches approximately 500 KB – several thousands data records – per second
during peak times. Thus, storing the feed data within seconds after arrival is
the most important problem to be solved by our architecture. Experience also
shows that the feed’s volume tends to increase slowly but steadily over time,
which underlines the importance of scalability.

There is a broad range of product configurations that are part of the
product line. The following list provides some prototypical examples and the
way they deal with storing the data feeds in time:

• Backend for Internet based general-purpose financial information systems.
Provides real-time and delayed data, uses a PushedCache for better per-
formance.

• Backend for special purpose information systems that also offer derived
data. Includes RatioCalculator that calculates security type specific sec-
ondary data.

11.4 Current Process 177

• System to create official stock market reports that document every trade
that happened on a specific day. No delay feature necessary.

• Delivering end-of-day data to build historic price databases. No need to
store TickData, no delay.

• Providing intra-day snapshots for desktop applications.
• Backend for clients that receive real-time push data. Uses a number of

PushedCache instances.

Logical View

Figure 11.2 shows a conceptual overview of the i*ProductLine. Boxes, arrows
and cylinders represent components, data flow and data stores respectively.
The architecture can be roughly thought of as structured in layers. The lowest
layer processes incoming data and provides an abstraction over the multitude
of different data feeds. These data feeds encompass both real-time feeds di-
rectly connected to a stock exchange and the existing market maker pm[x]
system which is encapsulated by a Java wrapper.

The incoming data is handled by a multitude of FeedConnectors. A Feed-
Connector ensures quality of service of the incoming data stream. If a discon-
nect with an existing data source occurs, it is capable of replacing this with
a data source with lower priority and to switch back once the higher priority

System pm[x]
External data

feeds

News data

DataAccess

Feed
Connector Parser

PushedCache PriceServer

Permissioning

Application layer

Portfolio Alerting

Search

Charts

User Interface

Rendering

Session Management

Component
manage-

ment

B
illing

M
onitoring

Life- cycle
M

anagem
entWriter Tick

data

Selector

Data layer

Wrapped legacy
System feeds

News Ref.
data

DataAccess layer

Feed
Connector Parser

PushedCache PriceServer

Portfolio

File & List

Alerting

Search

Charts

User Interface layer

B
illing

Life- cycle
M

anagem
entWriter Tick

data

Selector

Fig. 11.2. An overview of the i*ProductLine architecture

178 11 market maker Software AG

data source becomes available again. A FeedConnector forwards its incoming
data to the Parser component. The resulting information is made persistent
by a Writer component.

The interface to the remaining system is formed by the combination of a
PushedCache and a PriceServer component. They share the same interface.
Depending on the specific configuration, the remaining system can connect
to either one without the need for any adaptation. The PushedCache compo-
nent adds a caching layer on top of the PriceServer component; in case the
PushedCache is not able to provide the data, it queries the PriceServer in turn.

The application layer contains the end-user visible presentation services
like Charts, Filters and Portfolio definition. The user interface is provided by
a web server which uses JavaServer Pages.

The management services include billing and monitoring. The life-cycle
management is responsible for launching, starting, stopping, pausing and re-
suming components.

Hardly any component is present in all product configurations. Sev-
eral strategies are used to support the sophisticated handling of variability.
For example, a lot of update information is exchanged among the various
components. This was addressed by developing a single – although complex –
UpdateRecord object, which provides a sound approach for exchange infor-
mation among arbitrary component subsets.

In order to ensure that components are easily plugged in, a set of rules
is available together with a software development framework that enforces
them. In a previous version, the framework Avalon Phoenix was used, which
is expected to die as an open source project. More recent versions use the
Spring framework. Both frameworks have the following useful features that
improve reusability and testability:

• They define a domain-independent life-cycle model for binary components.
• The life-cycle interfaces, like starting and stopping a component, are

defined based on the inversion of control and separation of concerns
principles.

• The framework focuses does not put any constraints on a domain-specific
solution.

The framework, the defined interfaces and the concrete classes that sup-
port them are very mature. During our work on the product line, the team
never encountered a situation in which the framework would either have been
awkward to use or have been unusable at all.

Product Line Support

The Spring application container is well suited for product line development
because of the following reasons:

11.4 Current Process 179

• It allows for easy definition of product line instances.
• It allows for easy configuration of components.
• It offers very effective and pragmatic means to specify component services

and component dependencies in the code. Thus, it is very easy to extract
and use that information during the build-process.

• It offers effective and efficient means to provide a low-level management
interface based on a per-component model. Thus, it provides the “right”
management interface for every instance.

• Spring prevents typecasts so that a component cannot cast a service object
it uses to the type of the implementation class. Typecasts rely on assump-
tions about peer components that go beyond the roles agreed upon and
are therefore bound to lead to architectural mismatches.

SEDA-Inspired Multi-Threading Architecture

In order to meet the scalability and performance requirements for the
i*Product Line, the team of market maker had to implement a sophisticated
multi-threading strategy. Since most of the components perform a lot of I/O
and thus tend to spend a lot of time waiting, it was clear from the beginning
that every component should run in its own thread(s) of control. Threading
was started from scratch as follows:

• A component registers a callback interface “UpdateRecord” at ServiceM-
anager so any other component can send messages to it. In particular, the
ThreadManager provides threads and calls them via the ServiceManager.

• Every component depends on a ThreadManager component that provides
access to named thread pools, from which the component can obtain
threads to run its own services.

Implementing such a design is awkward and error-prone. Every component
acting as a distributor of UpdateRecords needs to implement a service that
keeps track of the number of components interested in receiving those objects.
Furthermore, every component has to implement a mechanism that allows it
to buffer incoming data until its own thread is able to process the data.

Once the team developed more and more components, it became clear that
a different approach to implementing the processing stages was needed. The
Staged Event-Driven Architecture (SEDA, [132]) was evaluated for improving
the situation. Core elements of a SEDA are processing units called Stages,
which are connected by Queues. Each stage performs the following steps: first,
it reads an event (object) from one of its input queues, then it processes the
event and finally it enqueues the processing result to an output queue. These
steps are performed within a single thread of control and each stage has its
own associated thread-pool. Therefore, the queues do not only transport data
between stages, but also act as synchronisation points: One thread enqueues
an event and another thread in another stage dequeues that event for further
processing. In addition to that, the queues act as buffers. Whenever one stage

180 11 market maker Software AG

produces events faster than they are consumed by a connected stage, the
queue can compensate for this difference temporarily.

The SEDA concept is well suited for product line development because of
the following reasons:

• It combines the benefits of SEDA (scalability, throughput) with the ben-
efits of the component framework (ease of instantiation, reuse). Product
line instances do not suffer from poor performance due to the overhead
introduced by configurability.

• If offers a very powerful means for wiring components together that goes
beyond the capabilities of the component framework. This does not com-
plicate the task of deriving product line instances, because configuring the
different queues is an integral part of the overall application configuration.

11.4.3 Process

It should not come as a surprise that market maker does not have a fully
defined and documented software development process. The team is small,
and the project environment changes rapidly. But this does not mean that
the development team is not process-aware. The introduction of product line
engineering has had an enormous impact on the process. After five years of
adapting the process to the needs of everyday project work, we must admit
that not every change was foreseen and foreseeable. Post-mortem analysis of
the changes showed that most of the process changes fall into a few categories.
They are described in this section. Here, we do not cover those process areas
where no specific efforts were required for the introduction of product line
engineering.

Scoping

This process was not present at market maker before the creation of the
i*ProductLine. Instead of extending and maintaining existing products, a
company team came together for the first time to forecast the market. So
far, new products had rarely been added to the product portfolio. New prod-
ucts were developed only due to demands that were identified by accident.
Scoping – or more precisely product portfolio scoping [122] – dramatically
changed the company culture. Some of the products identified in 1999 have
never been developed, but they helped to clarify requirements for all the oth-
ers. Scoping performed in a team of experienced people supported a common
vision and helped to prioritise products. The most important document, as in-
terviews with the development team revealed, was the genealogy chart [122],
which documents the product instances and their relationships in terms of
commonalities and differences.

11.4 Current Process 181

Architecture Assessment

After two years of developing the product line, it turned out that due to
project pressure and the fact that various developers were working on central
parts of the system there was the danger that the reference architecture might
become too complex. In search for instruments to measure the structural
quality, the FhG IESE approach “M-System” was chosen and introduced [61].
On the basis of fairly simple measurements to determine the coupling of classes
and components, all of the i*ProductLine code was regularly analysed, and
the results were discussed at quarterly team meetings where the architecture
was assessed and plans for corrections and quality goals expressed by the
measures were set. The measures selected (Table 11.1) are not considered
the ultimate answer to all questions on structural quality. The major reasons
for choosing them were ease of data collection (including availability of a
tool), agreement by all persons involved that the measures contributed to the
measurement goal and simplicity. Noise had to be accepted due to the human-
based interpretation. Defining the measurements more precisely would have
resulted in a worse cost/benefit ratio and would have made data collection
more difficult.

Table 11.1. Selected metrics for architecture assessment

Name Definition

CBO Coupling between object classes. Given a class C, the number of classes
coupled through method call or attributes. The classes C and D are cou-
pled to one another, if methods of one class use methods or attributes
of the other, or vice versa.

CBO IL CBO – Internal Libraries. The same as CBO, but class D is part of an
internal library.

CBO EL CBO – External Libraries. The same as CBO, but class D is part of an
external library.

OMMIC Import coupling through methods of two classes. A class C is coupled to
a class D if C calls a method of D or if C has a method with parameters
of type class D.

MPC EL Message passing coupling – External libraries. The number of method
invocations from C to methods in external libraries.

OCMEC Export coupling through class-method interaction. The number of
times a class C is used as a parameter of a method from another class.

OCAEC Export coupling through class-attribute interaction. The number of
times a class C is used as type of an attribute in another class.

IH-ICP Inheritance information-flow-based coupling. The number of method
calls to inherited methods, weighted by the number of parameters of
the invoked method.

NIMP Number of implemented methods.
NMINH Number of methods inherited.

182 11 market maker Software AG

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160
CBO

O
C

A
E

C

UserDataProviderIfc
WPIdentifier
Materlfc

TimeController

MergerProperty

ServiceManager

Log

User

MMLiveData

Servicelfc

Fig. 11.3. Example of Quantitative Architecture Assessment

Figure 11.3 shows an example of a two-dimensional chart that relates two
coupling metrics. One task during architecture assessment was to discuss the
outliers in such charts. A basic assumption was made that classes with ex-
treme values are always problematic. However, it turned out that this is not
necessarily the case. Sometimes an extreme value reflects the nature and role
of the class. The Log class (lower right corner of Fig. 11.3) is an example of
such a class. It must be coupled to many classes, as its role is to keep track of
what is taking place in these classes during the execution of the application.
In other cases, e.g. the User class (lower centre of Fig. 11.3), the developers
agree that the coupling to other classes was too high and that it indicates
that this class should be analysed more closely.

Domain Design

The product line is continuously evolving. Not all requirements or product
instances could be foreseen during scoping and domain analysis, and changes
sometimes have a deep impact. Learning about the system itself and newly
available third-party components put additional emphasis on steadily caring
about the design. Here, refactoring can help to keep the system under con-
trol. Sometimes refactoring is triggered by architecture assessment, sometimes
major changes force a separate software branch and must be integrated af-
ter project deadlines have successfully been passed. Returning to component
design afterwards requires management awareness. Developers need time to
refactor components without any customer paying for it. Therefore, these
efforts are counted as additional costs when talking about the gains of em-
ploying a product line. It must be understood that there is not only an initial

11.4 Current Process 183

investment in setting up a product line, but also continuous work in cleaning
up the components from ill-structured code. Towards this end, the developers
follow standard guidelines.6

Domain and Application Unit Testing

The product line code was first tested by the developers as part of their every-
day work. Later, acceptance tests were performed. The components and the
implementation of the reference architecture (i.e. platform assets) are com-
mon to many products. Changing a single component may affect many other
products and component behaviour might be changed by accident. On later
updates this erroneous code would get productive and cause failures. Costly
error removal and annoyed customers would be the consequence. Hence, un-
intended effects of changes on products must be detected as early as possible.
Unit tests written using the JUnit testing framework [77] that check the com-
ponents’ interfaces were added early to detect errors.

Automated Build Process

The component tests are part of an automated process which is invoked every
time a developer checks in software to the central repository. The process
performs compilation, binding, and calls JUnit. Developers receive feedback
about the process state within minutes by e-mail, so that they can react
immediately to compilation errors and failed unit tests. This process has been
implemented using Cruise Control [41].

Change Management and Issue Management

In contrast to most of the other processes listed here, change management
is a highly product- and company-specific task. It depends on the way a
company deals with its customers and how much pressure a bug report creates
on the development team. We believe that change management and issue
management needs to be tailored to a large extent to the existing processes
in an organisation. Two major drivers have been identified for changing and
improving this process. First, each incoming issue report must be analysed
in order to identify the impact on the product line. Small errors may have
a huge impact if basic parts of the software need to be changed. Secondly,
the time between reporting of an issue and the delivery of a software version
that addresses it tends to be longer in product line engineering. This might
sound surprising given the fact that time to market declined. Simply speaking,
the process of resolving an issue is more complex in product line engineering
than in single application development. Issue management was defined as a
separate process and is supported by a tool to keep track of issues reported.
6 Examples of such guidelines can be found in [21, 84]

184 11 market maker Software AG

Today, two senior staff members are responsible for screening incoming issues
and planning changes.

For every change it must be decided whether time pressure requires to
create a separate branch of the software just to satisfy project deadlines or
to meet the customer’s needs. It is also part of change management to plan
for the incorporation of changes to one branch into the main branch, and to
delete the old branch.

11.4.4 Organisation

Introducing product line engineering at market maker had an impact not only
on software development processes but on the organisation too. Prior to the
product line introduction, the development team was organised as a group of
people with similar roles. Every developer was responsible for a set of features
or classes assigned to him.

Because the product line team was built after development had already be-
gun, parts of the software had already been written while the organisation was
still to be formed. Some of the organisational issues had been answered im-
plicitly. For example, the role of the developers of the standard market maker
products was left unchanged as these products had already been encapsulated
and integrated.

Software product line engineering requires to structure the software devel-
opment team, regardless of its size. We decided to define a set of roles that
were assigned to individual developers. Management did not prescribe how to
fulfil responsibilities, but it did carefully control the process.

The prime reason for creating the roles was to be able to split up the
development team into two groups: one group was meant to perform domain
engineering and the other group application engineering. However, this sepa-
ration was not implemented completely for the following reasons:

• A team size of five persons is small enough to be managed as a single unit.
• Using and extending components does need domain engineering knowl-

edge, especially in mission critical projects. Here, senior staff must guide
junior employees.

• The platform evolves. Not only due to refactoring, but also because of
major redesigns that serve to extend it for previously unforeseen use.

The introduced roles, described in detail below, are scoping team, domain
expert, architecture manager, component developer, change manager, request
dispatcher, issue tracker, build manager and product line manager. A single
person assumes more than one role. These roles do not cover all activities
within product line engineering, and they were not completely new to the
organisation either. However, it is important to note that a separation of
responsibilities took place.

11.4 Current Process 185

Scoping Team

As mentioned above, scoping was one of the key processes introduced. To
address the importance of this activity, it is conducted by a team of experi-
enced people. The team does not exist permanently, but is formed each time
a major scoping process is to be performed. Team members are from software
development (not only of the i*ProductLine but also from other units) man-
agement, sales and marketing. The aim is to bring together as much brain
power as possible and not to leave important decisions to individuals. The
most important reason for this is to share the vision and reach consensus on
the development goals.

Domain Expert

Senior software engineers are responsible for development, maintenance and
enhancements to the components and the general framework. Severe domain
knowledge is necessary in order to shape the components correctly.

Architecture Manager

The design of the overall system is crucial for the success of the product line.
To keep a consistent picture of the whole project, a single senior employee
was chosen for supervising the main jobs on the reference architecture. One
of the tools he uses is architectural assessment with the “M-System” tool.

Component Developer

Less-experienced developers are assigned to application engineering tasks.

Change Manager

After the creation of a first product line version, the change manager is the
most important product line engineering role. He guides the process of impact
analysis, evaluates change proposals from sales and management, triggers or
accepts proposals for refactoring and determines schedules for releases that are
shipped to the customer. As market maker is still fairly small, only one person
is assigned to change management on a part-time basis. It was a good choice
to select the most experienced person, because a lot of implicit and in-depth
knowledge about the system is necessary in order to do this job right.

Request Dispatcher

Each issue coming into the development unit needs to be screened. Those
classified as minor issues are assigned to developers, whereas all others are
assigned to the change manager. On average one or two major issues are
documented per month. The request dispatcher needs in-depth knowledge of
the system.

186 11 market maker Software AG

Issue Tracker

Each issue reported needs to be watched carefully for its deadline. In addition,
communication with the customer needs to be established and maintained. A
person was hired for this task, which also includes the preparation of evalua-
tions of the issue database in order to control the process as well as product
quality from a statistics point of view. The issue tracker should not be part
of the development team in order not to get too deep into the projects.

Build Manager

In order to get an instant build that can be validated against the JUnit
tests, the automated build process must be clearly defined and constantly
maintained.

Product Line Manager

A strong, visionary person is needed to drive the introduction of product line
engineering and to prioritise process and organisational changes during devel-
opment of the product line. Sound research knowledge as well as pragmatic
decisions are needed. The product line manager is responsible for setting over-
all schedules, sponsoring components and resolving conflicts that cannot be
resolved internally.

11.5 Results and Impact Evaluation

The i*ProductLine is a success story of market maker. A variety of seven
standard products is derived, and additionally more than two dozens spe-
cialised individual solutions are provided to customers with very specific sets
of requirements. The goals of the product line have been achieved:

• Time to market is very small, for standard solutions less than a week. We
don’t have figures of projects former to i*ProductLine, since there were
none delivering web-based solutions. Estimates of management are that
without the product line project time would be two to four times longer.

• There was no detailed analysis of the cost-benefit ratio of introducing
product line engineering. Some figures identified on developer analysis as-
sume that maintenance effort has been reduced by some 60%. According
to sound estimates, the time required for maintenance is also reduced by
at least 50%.

• More than 70% of the projects performed today are specialised or individ-
ualised solutions for a customer. We would not expect to win such projects
in case a standard product would not exist.

11.6 Lessons Learned 187

• Sometimes conflicts between application engineering and domain engineer-
ing occurred. For example, an urgent project was brought in by sales during
component redesign. For economic reasons, it was important to accept the
demand and create a branch in version management. The more urgent the
project deadline was, the better it turned out to first create a separate
branch and to integrate the changes into the main branch later.

• An unexpected observation was that although initial project time was
reduced, resolving issues took longer. This is due to the increased effort
needed for impact analysis and time lacks caused by scheduling work in a
more complex setting compared to traditional single system development.

• Customers are not interested in whether a product instance stems from
a product line and do not want to pay for product line engineering. The
company learned from this fact and now offers projects on a fixed price
basis instead of getting paid for effort spent.

The results must be interpreted in the context of software development
for the i*ProductLine. Even within the company it is questionable whether
the same results would have been achieved in another organisational unit,
where desktop applications are developed. We see the following circumstances
as important for the success:

• The introduction of product line engineering profits from having a small
team. Not only small teams can build a product line, we do believe that this
team size reduced problems by compensating for missing organisational
structure. Turnover of staff was very small, so much of the company’s
tacit knowledge survived over the years.

• The domain is fairly stable. Stock markets seldom create new products.
Product line engineering benefits from stable domains. Here, the power of
scoping becomes fully visible as it enables better planning.

• Encapsulation of legacy systems in Java wrappers saved development effort
and helped to get started on a stable platform of domain functionality. This
was later regarded as one of the top reasons for the success of the whole
product line.

11.6 Lessons Learned

Apart from process and organisational changes, there was a number of other
important issues addressed or identified during the introduction of product
line engineering that were uncovered in the post-mortem analysis. Some of
the findings are listed below:

• A simple, yet flexible and stable set of architectural principles (e.g. SEDA,
inversion of control, consequent use of interfaces) supported a strategy of
divide and conquer for the components. This directly relates to mainte-
nance efforts and the ability to adapt components to changed or extended
requirements.

188 11 market maker Software AG

• Prioritisation of work takes place on component level, not on feature level.
This enables the development team to work on larger chunks of software
changes and to minimise efforts for the integration of modified components.

• The first customer might be dangerous because the system will be designed
and developed to his vision.

• The reference architecture is the central piece of software in any project. A
strong emphasis was put on this in order to avoid situations where appli-
cation engineering ignored the domain engineering results (see e.g. [20]).

• Rigid process definition was not needed because of the small team and the
developers’ competence.

• Developers work in both domain engineering and application engineering,
especially in the first customer projects. This enables short feedback cycles
and helps developers observe their components in real life, which already
caused major changes primarily to component deployment and manage-
ment in the beginning of the i*ProductLine.

• Automated builds including testing with JUnit turned out to be the key
for higher quality and helped avoid defects slipping to later phases. The
quality of the work leaving the developer’s desk and entering the platform
is important.

Introducing product line engineering gave our research partners the op-
portunity to watch the application of this technology and to receive feedback
about the pros and cons. Several interviews, either on specific approaches
or on the overall project, were conducted with developers and management.
Data was gathered in questionnaires, which helped researchers improve the
methods and techniques:

• The use of PuLSE helped to improve the approach, and the experience
gained supported applications in other projects [122].

• Testing, especially regression testing, must use information on the com-
monalities of product instances. Currently, a separate research project
focuses on tool support for generic test scripts being instantiated on con-
figuration information of product instances.

• Interviews with developers and managers helped to justify the appropri-
ateness of the product line approach in a small company and influenced
the definition of later versions.

• Component extraction as a new approach to reverse engineering was ap-
plied in order to retrieve core assets from legacy systems. The application
showed the limitations of the approach in the given environment, e.g. miss-
ing tool support and consideration of variability.

• A prototype technique to link business goals and architecture elements
identified road blocks early and helped to set the focus right.

• Architectural assessment showed that the reference architecture tends to
use mechanisms like Java’s reflection and late binding. Static code analy-
sis cannot detect such relationships between classes since information on

11.7 Summary 189

which class to instantiate resides in configuration files. Dynamic analysis
using run-time information is needed [61].

11.7 Summary

This chapter reports about a small company which decided to develop a prod-
uct line in order to build as many product instances as possible based on their
competence in the stock market domain. The i*ProductLine has existed for
little more than five years now, and it can be considered as being successful
both from a business and from a technology perspective.

More than a dozen products have been developed by a small team that
took care of sound engineering principles and modified the processes and the
organisation to address certain issues brought up by product line engineering.
The processes added or changed emphasise which parts of traditional processes
must be considered when applying a product line approach. Major changes had
to be made in domain engineering. Especially, adding the process of product
line scoping dramatically changed the way market maker acts on the market.

Organisational changes have been implemented in order to identify roles
as sets of responsibilities. Usually, individuals were assigned multiple roles.
The processes to be performed were not documented in full detail because
processes changed due to the learning curve associated with the introduction
of a product line. A mapping between processes and roles was performed in
order to demonstrate that a complex relationship between roles and processes
resulting from product line engineering exists.

Lessons learned were uncovered during the final evaluation of the project
as part of research projects that tried to gain a better understanding of the
nature of product line engineering in general and the relevant factors in this
project in particular. Major lessons concern the impact on time and effort, as
well as consequences concerning the relationship with customers.

After four years the introduction of product line engineering was con-
sidered finished, although certain processes still need to be optimised and
improved. The product line continues to evolve and more years of interesting
work around software product line engineering lie ahead.

12

Nokia Mobile Phones

with Claudio Riva
Jianli Xu

Company facts of Nokia Mobile Phones

Organisational size: >1,000 developers.
Starting Mode: Strategic focus, based on existing assets.

Experienced improvements:
- Better understanding of software evolution.
- Better insight in commonality.

Business: Architecture evolution supports changing business
needs.

Architecture: Architecture models ease its evolution.

Process: An approach to architecture modelling and docu-
mentation.

Organisation: Needs of different stakeholders are taken into
account.

192 12 Nokia Mobile Phones

12.1 Introduction

Nokia is the world leader in mobile communications. Backed by its experience,
innovation, user-friendliness and secure solutions, the company has become
the leading supplier of mobile phones and a leading supplier of mobile, fixed
and IP networks.

Before 2004, Nokia consisted of two large business groups, Nokia Mobile
Phones and Nokia Networks. At that moment, Nokia had over 19,800 people
in R&D, which is 39% of the total personnel. The total R&D expenditure in
2003 was €3,760 M, which is 12.8% of the net sales.

Nokia Mobile Phones is the world’s largest mobile phone manufacturer.
With its comprehensive product portfolio covering all consumer segments and
standards, Nokia is a market leader. Its mission is to enable people to connect
with one another and to information regardless of time and place. Nokia’s
technology and applications are designed for human needs and are based on
solutions that function seamlessly and effectively together.

The mobile phones group is responsible for a diverse and large portfolio
of mobile phones, multimedia devices and mobile services for corporations. In
January 2004, the Mobile Phones business group was split into three smaller
business groups:

1. Mobile phones: for developing mobile phones.
2. Multimedia: for developing both voice and non-voice multimedia technolo-

gies (e.g. camera, video, mobile TV, games and more)
3. Enterprise solutions : for developing corporate-wide mobile solutions and

services.

This chapter concentrates of efforts done within the first group, the Nokia
Mobile Phones1 to business.

12.2 Motivation

Nokia has several product lines in development. Although all BAPO aspects
are relevant, this chapter focuses on architectural modelling. An important
aspect is that product line architectures tend to be very large. This means that
the architecture must be represented in multiple views to be comprehensible
by its stakeholders. Each of these views describes the system from a different
angle, focusing on certain characteristics of the system. This chapter shows
how security concerns can be addressed based on architectural diagrams. The
case study was conducted with the co-operation of Tampere University of
Technology.

A common architectural view describes the decomposition of the system
into parts. The whole system is divided into sub-systems which can be further

1 From here on, the term ‘Nokia’ is used as a short hand for ‘Nokia Mobile Phones’

12.3 Approach 193

divided into other modules. An important aspect of the architecture is that it
has to be understood by many stakeholders. Each stakeholder may need his
own view.

The following are some of the relevant questions with regard to decompo-
sition:

• Are the sub-systems only used on the highest level?
• Can a sub-system contain other sub-systems?
• What does each sub-system contain?
• What are the modules?
• Does a module contain actual code or binaries or some conceptual ele-

ments?
• How is everything eventually mapped to concrete assets like classes, files

and files structures?

12.3 Approach

The software architecture models of a system are meant as a basis to analyse
the characteristics of the system before it is implemented. This supports risk
management by enabling the examination of quality attributes of the final
system. Therefore, the architect needs the ability to express those properties
in an easily communicated manner that makes the fulfilment of the wanted
characteristics explicit.

Effective communication of architectural properties can be achieved only
with concise documentation: when the amount of the architecture documen-
tation increases the benefits of the documentation decreases rapidly. It is very
hard to find inconsistencies in a document of more than 500 pages.

Nokia strives to describe architecture in a way that provides concise docu-
ments that directly address the wanted characteristics. This effectively allows
finding out potential problems of the architecture. In addition, it enables the
attachment of various measures to those architectural views in a way that
assists evaluating the properties of the architecture.

Nokia aimed to find the correct ways to describe software architecture in
the product line context, which allows easy specification of the wanted quality
attribute. The approach is presented using security as an example. Nokia has
investigated how it is possible to describe product line requirements [2] and
how it can connect requirements and the quality attributes to the relevant
design choices [116].

Early detection of the actual properties of the architectures potentially
lowers cost by reducing the amount of correction effort. Full life-cycle quality
enforcing mechanisms promise higher quality systems that do better match
the actual needs of customers.

For practical reasons, Nokia has chosen to use existing viewpoints to de-
scribe the qualities: these viewpoints are already in use within the company.

194 12 Nokia Mobile Phones

Previous results [102] include the use of the already-defined quality meta-
models and defined ways to describe quality attributes. These models are
applied using the collected practical viewpoints, Fig. 12.1. These viewpoints
show the current ways that Nokia uses to describe architectures. The view-
points are adapted to accommodate the quality characteristics by adding new
types to the model and derive existing types with quality annotations.

Using generic views has many benefits. They are easily understood, since
a known view is only slightly modified to add quality information. This makes
them easy to be used to model many products and variants, since they are not
as domain-specific nor do they concentrate only on one quality, which may
not be of interest to another product. The generic view is, therefore, ideal to
describe trade-offs among quality aspects since all of them can be potentially
described in the same architectural view.

On the other hand, quality-specific views concentrate on one quality at a
time, which reduces the amount of entities that must be presented, since the
view concentrates on the issues that directly address the quality. This allows
easy analysis and easier formulation of rules.

Additionally, it is necessary to define measures for each of the viewpoints
to actually say whether the selected quality is fulfilled by the concrete archi-
tecture specified in the architectural view. The description of the architecture
using the quality-annotated viewpoint helps to decide whether the selected
solution supports desired quality characteristics.

has many

Overall
property

Quality
model

Concern

MeasureViewpoint

organises

organises

used to
cover

organises

evaluated by

organises

Fig. 12.1. Architectural viewpoints (UML class diagram)

12.3 Approach 195

12.3.1 Typing and Quality Characteristics

Typing is in the essence of architecting. Types provide restrictions that are
the key for maintaining architectural consistency. When the reference archi-
tecture formulates the architectural rules using types, it is easy to maintain
these architectural rules during system design. In an ideal case, the architec-
tural rules are maintained by the toolset used by the software architects and
developers.

Over time, an effective set of architectural types creates a common lan-
guage within the project team. Everyone knows what is assumed when an
element is declared a server or when a client connects with the server. Hav-
ing a common language makes communication much easier because the team
does not go into the common details of every element, rather they can focus
on the differentiating facts. The types and their known properties, therefore,
ease exposing potential problems.

Some of the types can be more or less domain independent. The generic
terms such as sub-system or layer must be defined so that their definition
is clear. Then domain dependent types can be refined from the more generic
types. The properties of the generic types are inherited by the domain-specific
constructs, but there are constraints how these types can be used in the
domain-specific architecture.

The architectural type system must be grounded on reality, on things that
can be verified to exist. This process is done to every view. On the lowest level
there have to be file folders, actual files, build scripts, DLL’s etc.

12.3.2 Traceability

Requirements and features have to be traced to the architecture. Traceability
is facilitated by making the connection at the right levels of abstraction. For
instance, the refinement of a performance scenario – such as a response time of
two seconds for credit card validation – needs to be connected to specific design
choices. Through traceability, it is possible to map the requirements to the
corresponding architectural elements. This allows justifying the architectural
decisions with the requirements and previous design decisions.

Preferably, the design can be traced back to the requirements as well.
While refining the system design into its final realisation, we should continu-
ously match the design choices and the corresponding requirements. It is key
to make the mapping in a suitable level of abstraction. Both requirements
and design decisions are refined throughout the architecting process and the
connections should be present at the same level of abstraction.

Consider a very generic quality attribute such as security or performance.
This can be mapped to almost any design element. Every line of code has
some implication on the performance of the system and coding mistakes may
jeopardise the security of the system regardless of where they take place. It

196 12 Nokia Mobile Phones

is crucial to have the traceability connection in the right level. The refine-
ment of the performance scenario – “response time of two seconds for credit
card validation” – can be connected to design choices. This makes it possible
to map the requirements to the corresponding architectural elements. Trace-
ability allows justifying the architectural decisions with the requirements and
previous design decisions.

Requirements are situated in the problem domain. They are used to de-
scribe the needs of customers. During product line engineering, a product line
model of requirements can be constructed and selections are made for each
new product. Nokia found that it can be helpful to organise the model as a
forest, in which the requirements are related to each other in parent – child
relationships.

Features are situated in the solution domain. During product line engi-
neering, a product line model of features can be constructed and selections
are made to generate the assets of a new product. Information on the re-
quirements of the software product line is needed to create the feature model.
The construction of the feature model requires the knowledge on the archi-
tecture because that model reflects the variability that exists in the software
architecture.

Similarly, the features influence the requirements. A set of rules can be
defined to connect the variability in the requirements with the variability of
the features. Within Nokia , the rules for mapping requirement variability to
the features variability is specified as follows [115]:

1. Mandatory requirements : if any requirement in the set of requirements
specifying a feature is mandatory then the selection criterion of the feature
is mandatory itself.

2. Optional requirements : if any requirement in the set of requirements spec-
ifying a feature is optional and no mandatory requirements exist in that
set, then the selection criterion of the feature is optional itself.

3. Obsolete requirements : if all requirements in the set of requirements spec-
ifying a feature are obsolete then the selection criterion of the feature is
obsolete itself.

4. Non-reusable requirements : if all requirements in the set of requirements
specifying a feature is non-reusable then the selection criterion of the
feature is obsolete itself.

5. Multiple and single adaptor mapping to optional : if the children of a sin-
gle or multiple-adaptor requirement each depend upon mutually exclusive
features (or set of features each), that are independent of any other re-
quirements, then each of the childs requirements is treated as optional for
the selection constraint propagation purposes and thus (by earlier rules)
their related features are optional too.

6. Feature composition: if a requirement R1 has child requirements R1.1 and
R1.2, and feature F1 has child features F1.1 and F1.2, and R1.1 specifies
F1.1 and R1.2 specifies F1.2, then this can be composed to the simple

12.3 Approach 197

relationship R1 specified F1. Rules 1 to 4 then apply to set the selection
criterion of F1.

7. Variable mapping to mandatory: if a feature is specified or implied by each
variable requirement wherever it is in the forest of requirements then its
selection constraint value is mandatory.

12.3.3 The ART Environment

The ART environment – shown in Fig. 12.2 – covers software architec-
ture design, architecture model analysis and processing, architecture model
reconstruction and maintenance, during the entire life-cycle of a software
product-line [116, 115]. The architecture description/modelling language is
UML, customised with domain-specific architectural profiles. This allows

1. to use UML, which has already been widely used as a program design
language, in both architectural and detailed design in Nokia.

2. To use the best available UML CASE tools in architecture modelling –
at least the model editing, UML syntax checking and model management
functions of those tools.

3. Most importantly, to give UML more precise semantics for architecture
modelling by using architectural profiles, so that the profile-based archi-
tecture model validation tool can be used to check the architecture design.

The ART environment provides strong and efficient tool support to soft-
ware architecture design and maintenance in the context of large product-line
development. ART has been used intensively in the architecture design and

<<subsystem>>
Reverse-architecting

Tools

generate

<<File>>
Designed

UML model

<<subsystem>>
Model Repository and

Web Interface

<<File>>
Reconstructed

UML model
<<File>>

Source code

<<File>>
Architecture Profile

input model and
abstraction
rules from

input types and
model checking
rules from

extract model
from

store and retrieve
model data

validate

validate

<<subsystem>>
Model Analysis and
Processing Tools

Fig. 12.2. Overview of the ART environment

198 12 Nokia Mobile Phones

maintenance task of a main product-line of Nokia mobile terminal products,
and has been partly applied in another product line.

The results achieved so far are significant to the further development of
the product lines. Nokia has already started the large-scale deployment of the
environment in Nokia mobile terminal software development.

The aim is to extend the current ART environment and approach to better
support the evolution of software product line architectures.

Figure 12.3 [116] shows how the tools from the ART environment are used
to support the evolution of the product-line architecture in a simplified pro-
cess. ART’s model operation tool is extended with a set of model operations
that can identify the common parts and changes between UML models of dif-
ferent product releases. The view/model generation tool can merge the newly

Implementation
model of release

n–1

Implementation
model of release

n

Implementation
model of release

n+1

Reconstructed
model of

release n-1
or earlier

Analysis
results

Product line life-time

detailed

abstract

PL level feedback

Reconstructed
model of

release n–1
or earlier

Model
analysis
process

Reverse
engineering

process

Design and
implementation

process

Forward
engineered PL

architecture model

PL
Architecture

profiles

Fig. 12.3. Software product line architecture maintenance process

12.4 Example: Security 199

detected common subset of models to the original software product line model
and create the new software product line model.

The ART environment consists of three main toolsets: the architecture
model analysis and processing toolset, the reverse-architecting toolset and
the model repository and its web interface. The model analysis and processing
toolset works with UML architecture models including not only the models
created by architects using a UML CASE tool (i.e. IBM Rational ROSE) but
also the UML models generated by the reverse-architecting tools. It allows the
software architects to create the UML architectural profiles and design models,
check models against the profiles, generate views at different abstraction levels
and from different viewpoints and finally analyse models and views. The aim
of this part is to provide software architects a complete and consistent view
of the architecture, and to help them to make the right decisions.

The reverse architecting toolset is used by the software architects to reengi-
neer or recover the architectural model from an implementation. Resulting
models share the same concepts and same model structure with the designed
architectural model, and can provide the same views at the same abstrac-
tion levels as the design model does. Hence, the same architectural profiles
can be used to check the recovered models to discover any violations in the
implementation.

Comparison of the recovered model with the designed model can also re-
veal significant architectural changes introduced during implementation. For
a fast evolving product line, being able to monitor the changes and keep the
evolution under control is extremely important.

The model repository provides an efficient way for managing and retrieving
all the architecture model elements. A model repository is necessary when one
has to maintain the architectural models of a large number of implementation
releases of a product line.

In the ART environment, a relational database is used to store architec-
tural models. A web interface provides easy access to the model repository to
software architects located in different sites.

12.4 Example: Security

In this section, we take a closer look at security as a quality aspect, and how
it relates to views, traceability and types. Security concerns are represented
in multiple views on the architecture. Different aspects of the security are
exposed in the distinct architectural views. We use three different viewpoints:
problem domain, structural architecture and deployment. Problem domain
models are ideal to capture requirements and features, whereas structural
and deployment models reflect how the model entities are connected to the
properties of those selections.

• Structural architecture shows the mapping between the detailed security
requirements and the architectural elements.

200 12 Nokia Mobile Phones

• Deployment describes how the architectural elements are in fact connected
to actual hardware units.

The architectural viewpoints used within Nokia support an incremental
design process. Initially, requirements impose constraints on which kind of
design alternatives can be chosen. Next, an architecture style is chosen. This
style limits the number of actual architectural mechanisms and tactics. Fi-
nally, an actual implementation mechanism is selected in combination with
the tactics to complete the approach for the system, in this case the security
approach.

We start with a domain model description to create a model of the do-
main that has all the relevant constructs and that allows to discuss the key
requirements of the system. The requirements are preferably phrased in terms
in the problem domain model.

Nokia does not model the requirements themselves graphically. Although
graphical modelling may be beneficial to make the connections between the
requirements and problem domain model constructs very concrete, that is
considered to consume too much effort. Instead, the requirements are done
using natural text.

The final problem domain model is obtained by combining two different
models. The initial problem domain model is combined with the relevant
constructs from the generic security model.

The simplified domain model (Fig. 12.4) describes the key concepts of the
web store application. It defines the main terms of the web store without any
specific focus on the security concern. It is related to the scenario that there is
a user that views items. If the user logs in to the application then he becomes
a validated user. Such a validated user can act as a buyer who purchases items
via a purchase transaction that requires money.

The generic security model (Fig. 12.5) is based on the common criteria.
For each concern, like security, a generic model can be created. This model
defines the main terms and concepts that can be used to describe what security
means.

The basic domain model is not really tied to the security concerns. It rather
defines quite generic concepts of any web store. Naturally, any real domain

buys

Problem domain model

views

requires

has

expresses value of

Anonymous
user

Validated
user

Buyer

Money

ItemUser

Purchase
transaction

Fig. 12.4. A simplified problem domain model (web store)

12.4 Example: Security 201

Generic security model

gives rise to materialises
attack on AssetThreatThreat agent

Fig. 12.5. A generic security domain model

model would be more extensive and have thoroughly defined constraints. The
generic security model, on the other hand, has no information on the web
stores. It can be applied to many occasions where security is a concern. Inde-
pendently, these two models provide only limited value. Combining the models
brings out the true value of the approach.

Figure 12.6 presents the combined model. It shows the generic security
model, adapted to the current context. The threat agent is defined to be a
type of a user. The money is an asset where the threat focuses on.2

The structural architecture is clearly part of the solution domain. It shows
how the system is divided into components and how these components are con-
nected together. Additionally, it describes the security-specific constructs in
the same diagrams as the architecture. The main types of security constructs
are different security mechanisms and zones. However, present day application
development cannot rely on truly safe zones. Even behind firewalls, various
techniques need to be used to secure local computers. Clearly, multiple tiers
of countermeasures provide better security than only one boundary layer re-
lying on one specific technique. In any case, security zones still play a role

Generic security model

gives rise to materialises
attack on AssetThreatThreat agent

buys

Problem domain
model

views

requires

has

expresses value of

Anonymous
user

Validated
user

Buyer

Money

ItemUser

Purchase
transaction

Fig. 12.6. The combined model

2 This model is a simplified version of the complete, real world model. One could
easily discover other types of threat agents besides the actual user. For this ex-
ample, the new combined model provides enough information

202 12 Nokia Mobile Phones

in architecting secure systems. Different zones allow rationalising on security
levels and techniques, since the threats vary along the zone.

It is very natural to use different methods for boundary crossing inter-
action, e.g. across public Internet, than for communication that takes place
inside a boundary like the intranet. Therefore, typically, the security zones
align with the deployment of the system, but the concern is still driven by
the security problem not by the architecture. The security zones should be
selected and scoped based on the threat that this area is exposed to. Aligning
the security zones with other similar overlapping areas reduces the number of
types. This makes the architectural type-language more expressive and allows
for easily expressing important concepts.

We consider the same web store example in the structural architecture
model. The architecture (Fig. 12.7) is composed of three main components:

1. Presentation describes items to users. It can be used by both valid and
anonymous users. This means that no account validation can be required
for these users. Therefore, we declare this component as part of the public
Internet security zone.

2. Account validator is responsible to allow users to register into the ser-
vice and validate them as registered users that can make purchases. The
account validator thus uses the security tactic access control.

3. Purchase manager is responsible for allowing the validated user to make
a purchase transaction. This component guarantees that the user will
eventually get the item that he or she purchased and that the money is
eventually charged from the user’s credit card (using the external inter-
face).

The external interface from the purchase manager is specified by the credit
card authorisation organisation and uses encryption when connecting over the

<<Security Zone>>
A safe zone

<<Security zone>>
Public Internet

<<Security Zone>>
Public Intranet

Purchase
Manager

Account
Validator

Item
Presentation

Fig. 12.7. Structural security architecture

12.4 Example: Security 203

public Internet. The definition of these three components and security zones
allow easy specification of architectural rules. For our system we formulate a
generic security rule: use an encrypted connection (Secure Socket Layer, SSL)
when transmitting confidential information over security zone public Internet.

The deployment architecture describes how the components are mapped
to the actual hardware. The generic constructs are the nodes, assets that
are deployed into the nodes and communication links between them. In this
view, the security concern is represented by security zones overlapping some
nodes and communication links, threats on generic constructs and security
mechanisms that are used as countermeasures to the threats.

The deployment view defines constraints on the allocation of software
entities to processing nodes. On the abstract level, this means to specify
constraints on the deployment. In fact, at the concrete level it is the actual
mapping of the software element to the processor. Nodes represent either hard-
ware devices or software execution environments. Nodes are nested and assets
are deployed on the nodes.

Figure 12.8 shows a very simplified picture of the deployment architecture
of the web store. All components are deployed as their own .jar files. The Item
presentation component is actually deployed at the client machine where it
allows a special, customised entrance to the web store. This means that this
component is part of the high-risk environment, here represented as threat
environment. Since the component is deployed at the client machine, it is

:ApplicationServer

<<artifact>>
PManager.jar

<<artifact>>
AValidator.jar

<<deploy>> <<deploy>>

:Client

web1 *

<<artifact>>
IPresen.jar

<<deploy>>

<<Security Zone>>
A safe zone

<<Security zone>>
Public Internet

<<Security Zone>>
Threat Environment

Fig. 12.8. Deployment security architecture

204 12 Nokia Mobile Phones

vulnerable to reverse engineering, communication sniffing and other hacking
approaches. Nokia decided that no major countermeasure is to be used here.
The component only takes care of the presentation and allows SSL connections
to take place, but otherwise it does not contain any information that would
make it a valuable asset to attack the web store.

The server side is deployed in a safe domain. Both the Account val-
idator and Purchase manager components reside in this zone. The main
countermeasures are physical ones. The computer running the web store is
placed in a safe location, in a locked server room. Additional security could
be obtained by having the two components running in different machines.
Getting the root password into one system would not jeopardise the whole
web store. Even then the ability to get root access to the Account valida-
tor allows the hacker to soon get access to purchase transactions on the ex-
pense of other user’s credit. For this reason, it is decided to keep it simple
and only run intrusion detection software in the server machine with auto-
mated scripts to close the connection (and set of the alarm) if intrusion takes
place.

The communication between the server and the client takes place through
public Internet where non-closure information is a clear security concern. The
countermeasure is to use encryption.

12.5 Lessons Learned

The motivation of the case study is to develop and test the tools for sup-
porting the evolution of software product line architecture. Software product
line engineering is an iterative process. The software product line architecture
evolves to deal with new requirements introduced by new products. Nokia has
developed the UML model operation tool that can help to induce new com-
monality from individual product architecture models. This helps to derive
the new product line architecture model based on the new commonality. The
extended UML model operation tool of the ART environment has been used
to identify the commonality of several selected products of a mobile phone
software product line.

As with any method, a more concrete method that really solves and eval-
uates the concrete architecture thoroughly is preferred by its users. However,
such a method always carries a lot of domain knowledge. This makes adapting
such a method outside of its application domain difficult. A careful balance
must be achieved between the usefulness and the domain independence of the
approach. In the approach, there is no formal way to prove that the require-
ments are satisfied by the architecture. Rather, Nokia explicitly relies on the
abilities of the particular software architect to make the connection.

12.6 Outlook 205

12.6 Outlook

The architecture models of several different products in a mobile phone soft-
ware product line are compared using the UML model set operations of the
model operation tool. Table 12.1 and Table 12.2 show the result data of the
set operations on the models of two pairs of products. Table 12.2 also gives
the detailed analysis data about the changes of dependencies from product
model B to model C.

Table 12.1. Data from comparing the architecture model of product A and B

B A A int B B - A A - B

common B specific A specific
Package 231 197 195 34 2
Class 786 1,169 668 120 501
Dependency 9,892 9,141 7,191 2,701 1,950

Table 12.2. Data from comparing the architecture models of product B and C

C B B int C C - B B - C

common C specific B specific
Package 235 231 219 16 12
Class 816 786 752 64 34
Dependency 10,246 9,892 9,019 1,227 873

The same set of operations can be performed again on the two common
subset models to obtain the commonality of the four selected products. This
final common model subset is the candidate to be merged to the software
product line architecture model. The merge is not a simple union operation
on two models, the common model subset is carefully analysed against the new
requirements of the software product line and new variation points. Through
these steps, the irrelevant model element in the common model subset are
filtered out and the rest can then be merged into the software product line
model. The current tool support helps in gathering the initial input model
data for the analysis of new software product line level commonalities. Espe-
cially when there are large models of many different products, tool support is
necessary.

13

Nokia Networks

with Osmo Vikman

Company facts of Nokia Networks

Organisational size: > 1,000 developers.
Starting Mode: Strategic focus, based on existing assets.

Experienced improvements:
- Improved management of very complex systems.
- Improved visibility and reuse of available assets.

Business: A shift from in-house development to partnering and
finally to an extended enterprise.

Architecture: Evaluation framework.

Process: Asset management.
Multi-partner, multi-project, multi-site develop-
ment.

Organisation: Separation in domain and application engineering.
Data warehouse within a complex development
organisation.

208 13 Nokia Networks

13.1 Introduction

For a general introduction to Nokia, refer to Chap. 12. This chapter deals
with Nokia Networks1 that provides network infrastructure, communications
and networks service platforms, as well as professional services to operators
and service providers. It focuses on the GSM family of radio technologies.

At the end of 2005, Nokia had more than 150 mobile network customers
in more than 60 countries, its systems serving in excess of 400,000,000 sub-
scribers.

13.2 Motivation

A major topic of interest for Nokia is asset management in a complex or-
ganisation. This involves both process and organisation aspects. Complexity
has grown over the years and Nokia is facing even more complexity in the
development of their network elements.

In the early 1990s, almost all of Nokia’s research and development was
done in-house. There were only a few sub-contractors, which were typically
working on Nokia premises, and some third parties provided functionality or
accessories to Nokia products. That was the situation when Nokia decided to
concentrate fully on the telecommunications business.

During the latter part of the 1990s, the telecommunications industry
grew at a very rapid pace. It became impossible for telecommunications
systems vendors to develop everything in-house, unless they were willing to
hire thousands of new developers each year. Instead, they increasingly used
sub-contractors and off-the-shelf components in their product development,
even outsourcing part of their mature product development to partners (cf.
Fig. 13.1). This shift from do-it-yourself to partnering made the need for sub-
contract, supplier and vendor management competences greater than that for
more traditional software, hardware and mechanical design skills.

Nokia’s present business environment consists of a number of independent
business units and product lines. Each of them develops its own products and
has its own product and platform roadmaps, business objectives and priori-
ties. The network systems are based on such individual products, platforms
and components. Some are delivered by development teams of in-house busi-
ness units, others come from sub-contractors or third-party suppliers. It takes
a lot of cross-organisational co-ordination to develop systems in such an en-
vironment.

Nokia’s development style can be characterised as product population engi-
neering. System development is organised in in-house systems integration pro-
grams. First, the system-level capabilities are specified. Next, commitments
of the involved parties for delivery of product releases are solicited. Program

1 From here on, the term “Nokia” is used as a short hand for “Nokia Networks”

13.2 Motivation 209

core

partners

Enterprise
Extended
enterprise

Fig. 13.1. Organisational evolution

management teams are responsible for co-ordinating product or platform de-
velopment work, and for maintaining the system view throughout system de-
velopment. All the actual development resources are owned and controlled by
the business units, sub-contractors and third-party suppliers.

Even with the new matrix organisation in place, the organisational com-
plexity is immense. Dozens of concurrent development programs demand
deliverables from technology platforms in a multi-site, multi-project and
multi-partner development environment.

Asset reuse within a business unit is relatively simple if the original de-
velopers are available for implementing consecutive variants. Reuse between
different business units or between different technology platforms is much
harder. Even though the technology platforms organisation provides the pri-
mary asset reuse capability, cross-organisational reuse is still rare.

There are several layers in the system development organisation (Fig. 13.2):

• Product lines are run by business units. They produce systems that are
delivered to the customers.

• The product lines use software, hardware or electromechanical platforms.
The platforms can be Nokia proprietary, commercial off-the-shelf or devel-
oped with partners in a consortium.

• A platform consists of numerous software, hardware and electromechani-
cal components. Components are developed in-house, by sub-contracts or
bought as commercial off-the-shelf products from third-party vendors.

• In turn, the components use materials and technologies.

At the top layer, a system must be delivered to customers. The customer
and end-user requirements must be allocated top-down, spanning all lower
layers. These requirements must be managed in a matrix with the layer-
specific requirements. The in-house and external development resources are
distributed geographically within the extended enterprise. Each layer has its
own specific requirements based on technology, legislation, regulations, stan-
dards, compatibility, interoperability and other forces.

210 13 Nokia Networks

v1 v2 v.1 v2 v4 v5v3v5

Proprietary Consortium

v3 v4 v1 v2

Platforms:

Components:

Materials and
technologies:

safety
durable

environment

performance
standards
interfaces

reuse

technology
legislation

compatibility
reuse

market / user
requirements

Product lines:

Fig. 13.2. Layers of product population engineering

Specific systems are described as a set of features. Their implementation
is allocated top-down over all development layers. Features are the top-level
sales items. They have been sold to the system’s customers. It is therefore
necessary to keep track of the features throughout system development to be
able to verify that the system lives up to its promises.

Feedback on field failures from the existing customer base is needed to
keep the system and product asset base current throughout its life-cycle. The
correlation of these failures with the software product line assets should be
analysed and the results fed back to in-house development groups and external
suppliers.

There are three primary processes:

1. Product creation spans from stakeholder need identification up to the re-
lease of product designs to the delivery process.

2. Delivery contains manufacturing, supply chain management and distribu-
tion of products.

3. Care deals with the needs of the existing customer base. It provides a
feedback channel for potential problem reports from customers and end-
users through field service centres.

13.3 Approach 211

Typically, asset development is done in a transient project organisation,
with projects disappearing after delivery, leaving the assets ownerless. The
projects provide dedicated development resources (software, hardware, elec-
tromechanical and others) to numerous parallel development programs. The
organisations for delivery and after sales are separate from those for asset cre-
ation. Asset developers are often not available when problem reports for an
installed system start flowing in from the field service centres. This asymmetry
makes it hard to connect customer feedback to specific assets.

13.3 Approach

Systems engineering aims to maintain the system view through all phases of
the system life-cycle (Fig. 13.3)2:

1. Concept: systems are defined as sets of (additional) features.
2. Development: software, hardware, electro-mechanics and services are de-

signed for developing the capability for the system.

Design models

Concept Support

RetirementDevelopment

Production

Deployment

Physical structure

Features Installed base

Fig. 13.3. Product line life-cycle

2 These are the phases as described in the ISO/IEC 15288 System Life-cycle Pro-
cesses standard [70]

212 13 Nokia Networks

3. Production: physical product structures are created for manufacturing or
acquisition of the constituent parts of the system, and the systems are
produced.

4. Deployment: systems are sold, delivered, installed and configured.
5. Support: systems in the field are actively maintained and serviced.
6. Retirement: systems are replaced, customers are informed. After retire-

ment, systems are no longer maintained or supported.

System engineering starts with the top-level system concept and a set
of common system features and proceeds to refine and allocate the require-
ments onto the various parties involved in the process. Throughout subsequent
phases, commitments get increasingly more detailed. Finally, they reach the
level where the effort to produce a deliverable is not split any further. Typ-
ically, a system iteratively evolves over the first four stages. When its assets
become obsolete, there is a need for a technology refresh to extend the life of
the system. If that is not feasible, it reaches the retirement phase.

Using an existing asset base is less risky than starting a software product
line from scratch. However, proper processes, methods and tools are needed to
assist in the recovery and integration of their assets. Long-term maintenance
of the software product line asset base supports the need for faster, better and
cheaper development of new products.

System properties above the component level have to be controlled and
managed during design, test, use and maintenance to be able to create and
guarantee the desired system properties. Therefore, the dependencies between
the customers and suppliers of the various assets must be managed. This is
addressed by a good asset management system. It provides a means of storing,
retrieving and managing assets throughout the life-cycle of interdependent
software product lines.

The primary focus of asset management in system development lies in
ensuring the integrity of a feature set across all parts of a system. Asset
management for product lines reaches beyond the scope of a single system.
Accumulating and managing a reuse repository may then span a whole com-
pany plus its external sub-contractors and third-party suppliers. This adds a
new dimension of complexity.

The main challenge of asset management for mobile networks is to keep
track of the backward compatibility of the assets at all layers and all phases
of the life-cycle, with business processes producing deliverables incrementally.

At least four types of assets need to be configured to be useable in a
subsequent step in a system development cycle:

• System requirements at each layer are configured for design.
• Design items at each layer are configured for production.
• Sales items describe a system and are configured for installation and com-

missioning.
• System features describe the upgrade of the installed base of a system and

are configured for the new capability.

13.3 Approach 213

Such configurations call for configuration management of assets. Configu-
ration management is commonly used in the product creation process, but it
does not extend to the delivery and care processes. Currently available com-
mercial tools are not useful because their scope of use is aimed at design and
implementation assets, and relationships are not well managed.

Nokia’s change management system is based on a commitment traceability
repository. It provides means for evaluating the effects of a change request
before it is submitted to the change management process. What-if scenarios
may be simulated at any level of a system structure and at any phase in the
system development process. The change management system is accessible to
all involved parties at any level of the system product structure.

Currently, a prototype data warehouse application is used to record the
development assets and their dependencies for all development programs in
the business units (Fig. 13.4). It was originally built for global product cre-
ation reporting purposes. The data warehouse collects once every day asset-
related data from all product, platform and component development programs
or projects (Fig. 13.5). It acts as an organisational recorder for all product
creation–related activities. An asset management prototype extracts and anal-
yses asset-specific data from the data warehouse. The maintenance group can
use this information to traverse the system, platform and component devel-
opment V-models in the reverse direction in case of a field problem report.
This way, the problem report can be correlated with the correct system asset.

Care

Data
warehouse

Product
creation

Feedback
on asset

Assets
traces

Asset
trace

Delivery

Product
designs

End
products

Feedback
on products

Installed
base

Fig. 13.4. Closing the feedback loop between asset development and end-users with
a data warehouse

214 13 Nokia Networks

Design models Physical structureFeatures Installed base

Fig. 13.5. Asset transformation

In order to enable feedback to the development processes, each asset has
a unique identifier, determined at creation time. This helps to identify any
relevant asset-related data sources. An end-to-end information model spans
all data sources to enable asset tracking over the whole life-cycle. Development
programs share their product line assets through a systems engineering assets
repository. New assets are mostly created by those programs that solve new
problems or take advantage of new opportunities. In contrast, evolutionary
development programs, e.g. those programs that develop the next release of a
stable system, may take existing assets from the repository and apply them
in their software product lines.

The commitment traceability mechanism was originally proposed as a ba-
sis for a decision support system for end-to-end feature management. It was
then refined and extended to cover both the pre- and post-development phases
of a system. The simulation model contains the requirements screening, road-
mapping and release management processes. It is also used to integrate re-
quirements management and resource and schedule management tools as data
sources for the commitment traceability repository.

13.4 Lessons Learned

Asset life-cycle management is still in its infancy. Most of the software product
line research has concentrated on the front-end and middle-part of the life-
cycle: scoping, architecting, domain engineering and management within a
development organisation.

A systems engineering asset repository is harder to define and implement
than an implementation technology–specific repository. Systems engineering
assets are more abstract items than technology assets, and they are more
difficult to identify, define and describe. Current asset-reuse practices focus
on implementation technology–specific assets rather than reusable systems

13.4 Lessons Learned 215

engineering assets. A complete systems engineering repository is not available
today.

Nokia’s data warehouse provides a view on the parallel and distributed
creation of assets and their dependencies across organisational boundaries.
Currently, there is a large number of isolated asset-related applications and
tools spread across the life-cycle of a software product line. A harmonisa-
tion program deals with this by creating an end-to-end product information
model. This will unify data management for the various disciplines like re-
quirements management, architecting and system design. In the delivery and
care processes, more uniform solutions already exist, e.g. Enterprise Resource
Planning and Product Life-cycle Management systems.

A project-oriented development organisation is a big obstacle for long-
term product line asset management. Individual projects are reluctant to reuse
existing assets if there is no easy way of validating and adapting them to their
contexts. Company-wide reuse schemes are hard to implement and deploy if
there is no buy-in from the business units. But proving the benefits of asset
reuse is a chicken-and-egg problem: reuse is supposed to provide faster, better
and cheaper results for projects, and project managers will only be convinced
when concrete evidence from past projects is available.

There is a conflict of interest in the priorities of the business and tech-
nology development. System development has a relatively short development
cycle compared to platform and component development. Business units typi-
cally aim at six to twelve months development cycles,3 while development of a
major new release of a technology platform may take several years, especially
for hardware platforms. In the past, new technologies drove the development
of platforms, and products used whatever technology was provided by them.
Now, the tide is slowly turning and business wants to drive technology devel-
opment on their terms. This conflict must be reconciled in order to guarantee
the schedules of parallel programs competing for development resources. A
common asset management model would help in identifying the dependencies
between asset creation and consumption and thus in deciding on the best use
of development resources.

The evolution of an organisation from self-sufficient do-it-yourself towards
a collaborating enterprise requires collaborative development, recovery and
integration processes, as well as methods and tools to support product line
engineering across geographical, organisational and cultural boundaries. The
organisation should be network-centric, not project-centric. Asset manage-
ment gets more difficult when a company trades dedicated in-house devel-
opment resources for the capability to orchestrate suppliers. Asset life-cycle
management then changes from managing one’s own assets into monitoring
the availability of external innovations and technologies, and identifying and
evaluating appropriate suppliers.

3 With the exception of completely new software product lines

216 13 Nokia Networks

13.5 Outlook

The transformation of assets from one stage of a development cycle to the next
is complex. It is currently impossible to trace these transformations through
all stages of the system life-cycle from concept to retirement.

Current technologies are replaced by new, more affordable and efficient
technologies at an ever-increasing pace. In particular, critical technologies that
have been incorporated into software product lines must be monitored con-
stantly for obsolescence. Reference architectures should accommodate tech-
nology replacement. There must be a technology-refreshment plan for the
whole life-cycle of such technology assets, including permanent research and
road-mapping processes.

Asset management through all the life-cycle phases of a system is still a
long-term vision. Organisational entities typically have ownership of assets
for the duration of a single life-cycle phase only. Afterwards, they pass the
responsibility to the next silo. The continuity of asset management suffers
from this. Assets are often left ownerless when they are handed over from
system development to the delivery process, which has to deal with assets of
many development projects.

Replacing the prescriptive project-centric approach by a proactive and flex-
ible network-centric approach would improve the collaboration among parties
within the extended enterprise. That would enable effective allocation and
de-allocation of resources in the various phases of an asset life-cycle.

Demand
orchestration

Architecture
orchestration

Supply
orchestration

Innovation
orchestration

Fig. 13.6. Extended enterprise with orchestration capabilities

13.5 Outlook 217

The next step is to create extended enterprise-wide orchestration capabil-
ities for innovation, demand and supply based on system and platform ar-
chitecture orchestration (Fig. 13.6). In practice, this means that the primary
competence of such an organisation is system integration. It should not matter
where and by whom the constituent parts of a system are designed and im-
plemented. The architecture-centric orchestration capability would transcend
business domain boundaries, because that capability would be valid in any
domain.

14

Philips Consumer Electronics Software
for Televisions

with Rob van Ommering

Company facts of Philips TV Software

Organisational size: 250 developers.
Starting Mode: New architecture, reverse engineered code.

Experienced improvements:
- A single software product line for all of Philips’ mid-range and
high-end television products.

- Able to produce the variability desired by marketing.
- Variability no longer a key problem for architect.
- Software development no longer on the critical path of product
development.

- Still no need for a new software architecture after six years, while
previous architectures lasted less than five years.

Business: To support the required variability, while maintain-
ing a high quality-level and enabling combi-products
in the future.

Architecture: A compositional rather than a decompositional ap-
proach is taken. The Koala component model and
architecture description language is tuned towards
use in resource-constrained systems.

Process: A change from a project organisation to a products
and assets organisation.

Organisation: A product-oriented organisation was changed into a
single development organisation that hosts asset and
product teams.

220 14 Philips Consumer Electronics Software for Televisions

14.1 Introduction

Philips Consumer Electronics, a division of Royal Philips [103], is one of the
largest consumer electronics companies in the world. It has an annual turnover
of €10 billion and a sustainable profit of 5%, which is considered quite well
in this domain. Philips Consumer Electronics has 16,000 employees and is
present in all regions of the world.

Televisions are responsible for one-third of the turnover of Philips Con-
sumer Electronics.1 Though a quite traditional product, they are an impor-
tant factor in shaping the brand image that will allow all Philips divisions to
create and enter new markets in lifestyle, healthcare and technology. Philips
has a market share of 10% in televisions, roughly equal in size to its main
competitors.

In this chap. we study the software product line that was set-up to create
the software for televisions. The technology for this product line was created
in 1996, the product line itself was initiated in 1998, and the product line
has been in actual use since 2000. The approach is extensively documented
in [148].

14.2 Motivation

Televisions were one of the first consumer products to contain embedded soft-
ware and hardware. This started with an 8-bit micro controller and 1 KB
of memory in 1978, and since then both hardware and software have grown
following Moore’s Law quite closely [29]. Fig. 14.1 shows the size of software
in high-end televisions as a function of time.

The most important reason for this growth is the continuing integration
and miniaturisation of hardware, with an accompanying decrease in costs.
This allows to implement more and more of the functionality in software:

• A large part of the control shifted from hardware to software, for instance
setting the tuner, detecting stereo sound and blanking the screen during
zapping.

• Software made it possible to create fancy user interfaces, starting with
character-based On Screen Displays, followed by character-based menus,
then 2D graphical menus and now moving to 3D graphical menus.

• Data processing in a TV (Teletext) was done in hardware at first, but is
now mostly done in software; only the basic capturing of data is still done
in hardware. Other examples of data processing are closed captioning2 and
electronic program guides.

1 From here on, the term “Philips” is used as a short hand for “Philips Consumer
Electronics”

2 Closed captioning means displaying a transcript of the audio part of a television
program

14.2 Motivation 221

2
4

8

16

32 64

256
512

1,024 2,048

12000

3,000
4,096

32,000

100,000

64,000

1

10

100

1,000

10,000

100,000

1978 ’80 ’82 ’84 ’86 ’88 ’90 ’92 ’94 ’96 ’98 2000 ’02 ’04 ’06 ’08 ’09

K
B

Fig. 14.1. Growth of software (code+data) in high-end televisions (in KB)

• Sound processing – decoding, featuring and rendering – has shifted to
software quite a few years ago already, and image processing has recently
shifted to be implemented mostly in software.

• Modern digital standards such as MPEG-4 make processing in software
obligatory.

While this trend may alleviate the design of hardware to some extent, it
certainly makes the design of software more complex. Managing this complex-
ity is one of the challenges that we are still facing: a television is roughly as
complex as a personal computer ten years ago.

The second challenge stems from the need for the company to bring out
its products globally. While the global market was very diversified at first,
around 1996 the common parts of the functionality in a TV grew larger than
the region-specific parts, making a product line approach feasible. But profit-
ing from this phenomenon and reflecting this commonality and variability in
software is a non-trivial task, as many companies have experienced.

The third challenge was the upcoming convergence of products. Prototyp-
ical example of a convergence product around 1996 was a TV with built-in
VCR, which allowed features such as a one-button “record what you see”.
The first such product consisted of two separate hardware and software sys-
tems that were very loosely integrated. To become more cost-effective, the
two software architectures had to be integrated to run on a single CPU and
in a single memory. More convergence products were expected, such as a TV
with built-in DVD. A significant part of the problem was that TV and VCR
(later DVD) software was developed in different divisions, each with their own
profit and loss responsibility.

222 14 Philips Consumer Electronics Software for Televisions

These three challenges combine to the following problem statement. The
complexity of software is growing, and the number of product types increases,
while the lead-time must decrease and the quality of the software must be
maintained (consumers do not expect products to crash regularly). Philips
took a number of actions to achieve this:

• Urgent : achieve “reuse in space”, leading to an almost classical product
line approach.

• Medium-term: achieve “reuse in time”: making sure that products with
new features can be produced every year.

• Long-term: solve the convergence problem.

Reuse in space involves properly managing the diversity of complex soft-
ware in a product line. Obviously this involves more than maintaining a simple
list of variability parameters: there will be hundreds of such parameters so at
least some form of hierarchy is needed, and also the structure of the software
will depend on variability.

Reuse in time requires evolution rules that dictate how parts of the soft-
ware may be changed without breaking other parts of the software. This may
seem a simple “backward compatibility issue”, but there are many subtleties
involved that make this very difficult in practice, as anyone will understand
who has upgraded his operating system to a newer version and found his
favourite applications not working anymore. This issue includes a proper an-
ticipation of changes in hardware and coping with this in software.

But even if we manage to reuse 100% of our software over time, that will
not solve all problems. Because in a world following Moore’s Law, that would
only delay our problems by two years.3 The more fundamental solution is
to obtain software from elsewhere. Not by outsourcing it – as that solves the
people problem but not the cost – but by getting it from vendors who leverage
their development costs over multiple customers.4 For a consumer electronics
company, part of the software can be obtained from the hardware supplier
(the semiconductors company), and part can be obtained from independent
software vendors.

The convergence problem is the hardest to solve, as it also involves crossing
organisational boundaries within a company. The technical solution is to use
composition instead of decomposition. To address the organisational issues,
the existing situation of loosely coupled product teams was changed into a
single development organisation, with asset- and product-oriented teams.

3 Imagine a new product coming out every two years, where the size of the software
has doubled. Even with perfect reuse, half of the software will be new. This implies
that one still needs a team that grows exponentially in time, only two years shifted
in time

4 Thus establishing reuse over company borders

14.3 Approach 223

14.3 Approach

Before we delve into the technical details of the product line approach, we will
first describe how the product line was actually set up.

In 1996, software architects in the Philips TV department foresaw severe
problems in managing variability and asked Philips Research for a solution.
By that time, there was already a long-standing co-operation between the
TV department and Research in managing the ever-growing complexity of
software, which had resulted in the software architecture that was used then.

Philips Research responded by comparing different software component
models and creating Koala from the most suitable elements of these to solve
complexity and variability issues in resource-constrained systems. This com-
ponent model was transferred then, but using it to create the next generation
software architecture turned out to be difficult while also maintaining the
current architecture: key people could not be freed to work on the new archi-
tecture without endangering the current set of products.

Therefore, Philips Research was asked to set-up the next generation archi-
tecture and to fill this by reengineering the existing code. Interestingly, the
resulting software architecture outlived the original hardware architecture for
many years!

Research spent one year in setting up the architecture (1998), and then
one year to build a lead product with this architecture together with the
TV department (1999). The choice of the lead product proved to be critical: a
product was chosen with high visibility and low risk. The lead product actually
failed for non-technical reasons, but the second lead product was successful
(in 2000), and within two years the software architecture and accompanying
approach was used in the full range of Philips” TV products.

In the first two years (1998–1999), most of the developers of the TV depart-
ment were still maintaining the old architecture to bring out the majority of
products (and thus generate income). After that, developers gradually moved
from the old loosely coupled product teams into a new single development
organization.

Choice of the team also proved to be a critical success factor. The initial
architecture team consisted of three architects, one experienced in software,
one in business aspects and one in the domain. Five high-quality developers
were soon added, experienced either in the domain or in software engineering
(or both). An experienced project leader was added too.

As important as the team itself were the champions in the product division,
monitoring and defending the new approach. The direct owner of the research
work was the development manager of the TV department. The research was
sponsored by the software director and monitored by the software process
manager of Philips.

224 14 Philips Consumer Electronics Software for Televisions

14.4 Business Aspects

The television market is an established market: it does not grow much, but it is
very important for a company such as Philips to maintain market share, as this
provides 10% of the Philips turn-over (30% of Philips Consumer Electronics).
Also, it provides an important brand image for Philips to sell a variety of
other products.

This market shares some typical characteristics with other consumer mar-
kets. Features initially introduced in high-end TVs soon become commodities,
i.e. they are not positively discriminating anymore but they are must-haves:
they negatively discriminate a product that lacks them. To maintain market
share, development should be focused on adding new features, rather than on
reimplementing old features.

The television market is a global market with quite some regional variabil-
ity and a large range of prices. While individual products last over ten years,
waves of new technologies tempt customers to buy new products sooner: black
and white to colour, Teletext, sound and image quality, 100 Hz, 16:9, flat dis-
plays, picture browsing and connectivity are examples. The pace of introduc-
tion of new products onto the market increases from yearly to half-yearly or
even shorter. Competition increases since PC and display technology make it
possible for other companies, such as Hewlett-Packard and Dell, to enter the
TV arena.

The short-term challenge for software development is to stay away from
the critical path, to support as much variability as marketing requires and
to maintain the quality level required for consumer products. The long-term
challenge is to enable convergence in the form of combi-products and to com-
pete with the PC industry that is trying to capture the living room.

14.5 Architecture

Many researchers in the field of software product lines believe in an a priori
analysis of commonalities and differences of products in the portfolio, fol-
lowed by the creation of a single reference architecture with explicit variation
points.5 While this may work for a small product line of TVs, we were in
doubt whether it would work for the whole range of TVs that Philips pro-
duces, and we were sure that it would not allow us to create combi-products,
if only because it is very difficult to agree on a common software architecture
between different product departments.

We therefore opted for a compositional rather than a decomposition ap-
proach, partly inspired by the way that this was already possible in hard-
ware. We designed the Koala component model, inspired by existing models
such as Microsoft COM and Darwin [89], but tuned towards use in resource-
constrained systems.
5 See [11] for a discussion

14.5 Architecture 225

CC

C2

C1

C3

Fig. 14.2. An example Koala software component

Figure 14.2 shows an example component in Koala that illustrates many
of the features of the model. First of all, a component is a unit of design not
only of reuse, but also of implementation. In plain words, this means that a
component has a description of the interfaces at its borders so that it can
be used in various contexts, but it also has a specific implementation that
cannot be separated from the component: a component is a specification and
an implementation.

Koala components are implemented in C. The document-shaped objects
in Fig. 14.2 represent C files. The squares with embedded triangles represent
functional interfaces, with the triangle pointing into the direction of func-
tion call. A component not only specifies the interfaces that it provides to
its environment, but also the interfaces that it requires from its environment:
all communication with the environment is routed through interfaces. Con-
figurations of components where the required interface of one component is
provided by another one again form components. Thus, the component model
is hierarchical.

In the file system, a component is a directory with a set of (C) source files
and a file containing a Koala component description. There is no makefile for
the component: the makefile is automatically generated from the component
description. Put differently, the component description takes the place of the
makefile in traditional development.

Interfaces are defined, syntactically and semantically, in separate files and
in a separate language – the Interface Description Language (IDL) part of
Koala. This allows us to reuse interface definitions to create multiple im-
plementations of a functionality (remember that each implementation is a

226 14 Philips Consumer Electronics Software for Televisions

separate component). Also, by using an interface model similar to that of
Microsoft COM, we can extend components with new functionality without
breaking existing applications of that component. The Koala interface mech-
anism does not incur extra cost at run-time, as most interface bindings are
resolved at compile-time. Interface binding only results in run-time code if the
binding cannot be determined at compile-time.

An important side effect of the use of an IDL to specify interfaces is that
interfaces are kept relatively clean. This includes a proper separation of type
definitions from functional interfaces and a proper separation of a functional
interface from an inline implementation. In classical C, these two facets are
combined in a single header file.

Because configurations of components are again components, a product is a
decomposition tree of components. Note that a product line is a composition
graph of components, as basic and compound components can be used in
multiple products. Maintaining this graph is the main task of the architect.

The composition graph is actually the high-level mechanism to deal with
variability: different products may have different sub-systems sharing (a subset
of) the same components. Diversity parameters6 provide a low-level variabil-
ity mechanism to parameterise code. These diversity parameters are organised
into the so-called diversity interfaces, which are treated as ordinary required
interfaces. Switches allow to implement structural diversity in the configura-
tion of sub-components as an internal variability of the compound component
(steered by diversity parameters), thus forming the bridge between the “high-
level” and the “low-level” variability mechanism.

Packages group components and interfaces into private entities for use
within a team only, and public entities for use by other teams. Packages are
hierarchical: sub-packages allow a team to internally structure complex pack-
ages, while super-packages allow to model dependencies between packages in
a hierarchical way.

The television software is divided into three layers – all made by Philips
initially – with standard APIs between them (Fig. 14.3). This architecture
had a clear intention: on the longer term, the operating system (OS) part

Applications

A/V platform

OS

Fig. 14.3. Basic division of television software in three layers

6 ‘Diversity parameter’ is the Koala terminology for a ‘configuration’ - or ‘variabil-
ity’ - parameter

14.6 Process 227

would be obtained from independent software vendors, while the audio/video
(A/V) platform would be obtained from the hardware supplier, leaving only
the applications to be developed by the television department.

The use of an architectural description language (Koala) enables enforce-
ment of certain rules, such as allowed usage relations between packages and
easy checking of other rules, such as multi-threaded use of interfaces. The
ADL has a textual and a graphical syntax: the textual syntax is used in the
product generation, while the graphical syntax is used in design discussions.
Approximately 10% of the code is written in Koala; the rest is in C. The Koala
compiler generates C code and header files from the Koala descriptions. The
graphical component diagrams are made either by hand with Visio, or by using
a tool that automatically generates a diagram from textual descriptions.

14.6 Process

We have described some of the technical aspects of the software product line
approach in the previous sect., and they are indeed important success factors.
But a development department cannot switch to a product line approach by
incorporating technology only. The development process and organisation has
to be changed as well. We found the most important change to be the move
from a project organisation to a products and assets organisation. Previously,
there was one large team per product, doing a complete waterfall life-cycle for
that product. In the new way of working, medium-sized asset teams have an
iterative development process, and small product teams integrate assets.

Of course, work is still organised in projects, but there are now two kinds
of projects: long-running projects to develop and evolve assets and relatively
short-running projects to build products. Figure 14.4 shows the relation be-
tween these types. There are various models for organising asset and product
development, but we found the most workable to be an m:n relation between
sub-system and product development: sub-systems working for m products,
and products integrating n sub-systems. This relationshop between products
and sub-systems is defined by the architecture. Other models have a platform
integration step in between, but this adds an extra delay between implement-
ing a new feature and utilising it in a product.

Architecture

Sub-systems

Products

Fig. 14.4. The relation between sub-system and product development

228 14 Philips Consumer Electronics Software for Televisions

The way software is documented also has to change. A traditional, project-
oriented software development organisation typically creates requirements,
global design and detailed design document, describing what is going to
be made. Our product line documentation includes component and inter-
face data sheets, describing what has been made, with additional architec-
tural sub-system design notes, forming a living description of the evolving
architecture.

Configuration management is traditionally implemented as one big archive
for all software for all products, creating complexity and performance prob-
lems, or as separate archives for small sets of products, with opportunistic
reuse only between the different archives. We found it convenient to have
a configuration management system per asset team and per product team,
and have weak links between these archives, exchanging formal releases of the
software only. This scales relatively easily to larger organisations.

We are also in favour of an open development environment7 where everyone
can see every bit of software. We achieve this by publishing all releases on
the intranet. Of course, there are parts of the software for which this is not
possible, e.g. due to licensing reasons.

Testing also has to be adapted. Traditionally, products are created incre-
mentally, with continuous system testing ensuring that new features work and
do not break existing features. But if sub-systems are to be used in multiple
products, they have to be tested in isolation and this also holds for com-
ponents within sub-systems. However, testing sub-systems in isolation is a
non-trivial issue: many problems become apparent only after integration with
other sub-systems. This is why we create pseudo products at an early stage:
products that are not to be released on the market, but that serve as early
integration test for (new versions of) the sub-systems.

Managing requirements for a product line is a challenge by itself: in-
stead of separate requirement documents per product, one would like to op-
timally profit from commonality between products, but at the same time
keep individual documents readable. We also found that improperly struc-
tured requirements documents, where the product line aspects were not taken
into account usually result in improper design structures. While this can
be solved at the design level, the harm is still done at the requirements
level.

As a final remark on the consequences that a product line approach has
on the development process, the fact that sub-systems are used in multiple
products implies a road-mapping activity that plans and agrees on deliveries
between asset teams and product teams. In our organisation, a release matrix
is used to maintain a view on releases as functions of time.8

7 That is, open within the company. This is sometimes called Inner Source
8 See [138] for another discussion on this topic

14.8 Results 229

14.7 Organisation

Business needs must be translated into an architecture, and the architecture
shapes the development process. To execute this process effectively, the de-
velopment organisation must be adapted as well.

In Philips, software development was traditionally organised in product
teams responsible for the development of a particular product or a small set of
such products. We changed this in a number of steps into a single development
organisation that hosts asset teams and product teams.

The asset teams are in principle funded from a single source, derived from
the sum of contributions of the product teams. This is possible because there is
a single development manager heading all developments. Although in theory
asset teams work for multiple products, we have seen cases where product
teams requested specific sources from asset teams to work on their product.
While there is nothing wrong with asset teams being very aware of the specific
products that use their sub-system, we generally object to “people shopping”.

The balance between generic and specific development is delicate. In prin-
ciple, asset developers have the long-term applicability of their assets as goal,
while product developers have the successful release of their product onto
the market as immediate goal. But long-term assets have no value if short-
term products fail to be on the market in time. We have seen various models
to successfully build products in our organisation, including asset developers
joining product teams for short periods of time, and asset archives being split
into product specific branches. This may be appropriate in certain cases, but
there must also be a force pushing towards product independence and long-
term value of assets. At the end of the day, the only way that we managed to
achieve this is to make it the personal responsibility of the asset teams, and
reserving sufficient resources for asset development.

Another complicating factor is distributed development. TV development
sites were traditionally distributed around the world, with many locations in
the USA and in Europe. Development sites have also been opened in India and
in the Far East. We found it important to align the architecture, the project
structure and the organisation. In plain words, a sub-system is developed by
a single (asset) team located at a single site. We initially had four cases where
this alignment was not optimal – i.e. distributed teams were working on a
single sub-system – and in all cases the result was severe communication and
integration problems. Others report similar experiences [153].

14.8 Results

While in 1996 variability ranked high on the list of issues of the software
architects, variability has completely disappeared from that list since the in-
troduction of Koala and the accompanying product line architecture and ap-
proach. The team is now able to create the diversity of products required by
marketing, and to produce these different variants on time.

230 14 Philips Consumer Electronics Software for Televisions

An interesting side effect is that architects who joined the team in 2002 or
later have not experienced variability problems themselves and sometimes fail
to see the added value of a solution like Koala. Since it always costs a certain
amount of effort to maintain a proprietary solution, some want to remove
it altogether. This shows how a success factor can become a failure factor
later. Replacing a proprietary solution with a solution obtained elsewhere is
a different issue, and should be done as soon as such a solution is available,
and the cost of conversion is not too high.

Although the initial lead product failed for non-technical reasons, the sec-
ond product succeeded. After that, there was a quick ramp-up and, within
two years, all of Philips” mid-range and high-end televisions were produced
with this approach.

Another indication of success is the fact that so far there has been no need
to develop a new architecture. Previous architectures lasted at most five years.
Of course, with software size still growing according to Moore’s Law, setting
up a new architecture from scratch is almost unaffordable.

14.9 Lessons Learned

The most important lesson that we learned is that all facets of BAPO must be
addressed otherwise the introduction of a software product line approach will
fail.9 There must be a business drive to create a product line, there must be
a proper software architecture and component technology, the development
process must be adapted and the organisation must be made to fit.

It took us three years to become successful, and even longer if you measure
elapsed time. We sincerely doubt whether the introduction of a product line
approach in this context could have been done any faster, given the amount of
change that was needed in architecture, technology, process and organisation.
But keeping such an activity alive for three years without intermediate results
is very difficult, and has failed in some other parts of Philips. A technique that
can be introduced incrementally would therefore be highly welcomed. But we
also have experiences that changing an architecture incrementally is a process
that may be too slow to obtain significant results within a few years.

A successful product line organisation requires a very delicate balance
between application and domain engineering. The introduction of a similar
approach failed in another part of Philips. After setting up the structure, the
organisation could potentially produce many products, but fell in a genericity
trap and did not succeed in creating even a single product. As a result, the
organisation changed back to a structure that successfully produced a single
product but the potential for creating a product line was mostly removed.

One of the failure factors of a product line organisation is to have too
many dependencies among deliverables. If a change in sub-system A has to
9 In fact, the case described here was one of the inputs in the creation of the BAPO

approach

14.9 Lessons Learned 231

Q1 Q3 Q1 Q3 Q1

time

Fig. 14.5. Actual branching of sub-systems

be integrated into sub-system B before B can be released to C, then the time
between fixing a problem or implementing a new feature can become too
long. The m:n delivery model as described above is better, but requires strict
evolution rules and still some form of pre-integration.

The configuration management strategy is another critical factor. Many
configuration management systems claim that they can manage variability,
but they can do this only at the level of files, and they can only handle
compile-time variability. It is better to solve variability in the architecture, and
use a traditional configuration management system for version management
and for temporary branches to safeguard a product that is to be released from
changes to sub-systems made on behalf of other products. This scheme worked
fine for us initially, but then temporary branches were kept alive increasingly
longer, resulting in many parallel branches to be maintained. Figure 14.5
shows an example of this. Each vertical band represents a quarter of a year, the
horizontal lines represent different branches of development, and the triangles
represent (intermediate) releases. The longest living line is the main line of

Applications

A/V platform

Middleware

OS

Fig. 14.6. The top-level architecture as it evolves

232 14 Philips Consumer Electronics Software for Televisions

development, the rest are side branches. We measured the amount of effort
spent on side branches and found this to be less than 15% [149]. Therefore,
we still regard our product line approach as being successful, even though
improvements are still possible.

Figure 14.3 showed our initial top-level architecture, based upon the idea
that the three parts would be implemented by three different parties in due
time. This is in fact currently happening, with one addition: between A/V
platform and applications a middleware layer is emerging, with software pro-
vided by an ecosystem of independent software vendors, which again reduces
costs by leveraging the software over more products, as shown in Fig. 14.6.

15

Philips Medical Systems

with Gerard Schouten

Company facts of Philips Medical Systems

Organisational size: >1,000 developers.
Starting Mode: Strategic focus, based on existing assets.

Experienced improvements:
- Two to four times effort reduction.
- Reduction to less than 50% time to market for reused functionality.
- Product defect density to 50% of original rate for reused
functionality.

- Ease of feature propagation from one product to others.
- Common look-and-feel: Vequion.
- Better product planning and use of roadmaps.

Business: Alignment of planning, licence model to pay platform
effort.

Architecture: Based on shared components, interfaces and seman-
tics in several layers. Hierarchical product line model.

Process: Any product line amplifications for CMMI level
3. Multi-partner, multi-project, multi-site develop-
ment.

Organisation: Separation of domain and application engineering
organisations. Improved collaboration.

234 15 Philips Medical Systems

15.1 Introduction

Philips Medical Systems1 produces imaging equipment that is used to sup-
port medical diagnoses and interventions. Some systems are capable of image
acquisition. Examples are X-ray, Magnetic Resonance Imaging (MRI), Com-
puter Tomography (CT) and Ultrasound. Typically, such a product will scan
the patient in one way or another and produce images to be viewed immedi-
ately. Other products deal with image interchange, archiving and recovery for
later viewing, and image processing and annotation. Fig. 15.1 shows several
situations of this equipment in use.

The company is distributed all over the world, with product development
in several countries. Product groups (divisions) are responsible for specific
market segments. Typically, several (marketed) product lines are available in
each product group. Although the product lines differ a lot, there are also
possibilities for software reuse. All products deal with storing, retrieving and
exchanging medical images, and many product lines support image-processing
and viewing.

15.2 Motivation

In 1997, an initiative was started to produce the common software for all the
product lines as an imaging platform to be used across Philips. During the
introduction, several acquisitions have taken place increasing the portfolio to
come to a complete range of imaging products for hospitals. There is a strong
drive from the board of management to increase the synergy between the
newly acquired and the original groups, and to reduce the total development
costs. The imaging platform is a means to support this. The platform must
be usable for all product groups.

Fig. 15.1. Examples of medical imaging systems: X-ray equipment and a viewing
workstation

1 From here on, the term ‘Philips’ is used as a short hand for ‘Philips Medical
Systems’

15.3 Approach 235

Product
line

Platform

product

uses

Key

…

platform A

Imaging platform

…

platform B

Product
X… …

Fig. 15.2. Hierarchical product line at Philips

This chapter reports the main findings of the development and the intro-
duction of this imaging platform. The initial ideas of producing the platform
emerged in 1997, when the first meetings of architects of several development
groups were set up. In 1998, a start was made with the design of the reference
architecture, and the production of the first software components. In 2001
the first version of the platform was released, and used by the first product
lines. After that, the number of product lines that uses the platform has in-
creased rapidly. The platform has grown to cover many core medical software
components.

The imaging platform and the product groups using it form a hierarchical
software product line+(cf. Fig. 15.2) Each product group uses its own platform
variants and configurations in their own product lines. The imaging platform
supports several software product lines, and it must support a broad scope of
variability requirements. This set-up induces interaction and interdependency
between the development processes of the imaging platform and the product
groups. The resulting overhead is paid back by the reduction of duplicated
developments of similar software.

15.3 Approach

15.3.1 Adoption Approach

We will discuss three phases of the adoption of software product line engi-
neering at Philips: conception, birth and growth, depicted in Fig. 15.3.

Conception

There are many well-known reasons to start with software product line de-
velopment. Typical examples are to efficiently use the development effort and

236 15 Philips Medical Systems

conception birth growth

Fig. 15.3. Evolution of the scope of the platform, curve by Rob van Ommering

reduce lead-time, to improve quality, to exploit similarity among products
and to increase similarity. Most of these reasons apply to Philips. An impor-
tant way to improve development efficiency is to centralise the development
of common functionality of different products. A software product line engi-
neering approach reduces the development effort by reducing the amount of
duplication of coding and other development activities. In addition, it helps
to reduce the time to market, which was originally several years to about
one year. Of course, the quality level of the products is maintained, or even
increased.

The development efficiency increases through a shared, Philips-wide ar-
chitecture, with standard interfaces and reusable components. An important
goal is to increase the similarity among products. This impacts both the
marketing – showing the customer a large variety of similar products with
a characteristic look-and-feel – and system creation possibilities, through the
configuration of several products together. It also enables the so-called multi-
modality applications. For instance, viewing magnetic resonance imaging pic-
tures on X-ray equipment.

Since Philips’ products are used within hospitals, they are subject to high
quality standards. A common platform must support strict dependability con-
cerns and should be of high quality if it is to be used as the basis for medical
products. The confidence in the platform grows with the installed base of
products successfully using it.

Shared architecture meetings were organised to initiate software product
line thinking, and to get commitment of the involved parties. Architects from
several development groups discussed the options and problems of moving to-
wards a shared platform. One development group was making workstations
for viewing, storing and exchanging medical images. This group was the most

15.3 Approach 237

natural candidate to become the platform supplier. Two other product devel-
opment groups produced X-ray and MRI products. These groups were seen
as the first potential customers of the platform.

In the mean time, business commitment for initiating the reuse program for
system product lines was obtained. This was facilitated by a visit of Martin
Griss, co-author of Software Reuse [71]. Management and senior architects
decided to proceed with managed reuse. The department heads appointed a
platform development manager.

Domain engineering was performed in an ad hoc way. The architects were
all very well acquainted with the domain of medical imaging. The discus-
sions lead to a handful of crucial architecture decisions about the set-up of a
component-based, layered architecture. Shared interfaces and a shared infor-
mation model based on DICOM [46] to distribute medical images were defined.
The platform was built upon commercial basic software, its core being based
upon the existing software in the workstations product group. It was planned
to package this software into components with well-managed interfaces, and
to include it in the product lines of all three involved product groups.

Birth

The first middleware components, interfaces and data models were imple-
mented soon after the architects network was set up, management commit-
ment was obtained and the initial reference architecture was determined.
These components incorporated the kernel functionality of the platform.
Development was organised as a formal release project, involving a lot of
prototyping. The architects in the network assessed the first component im-
plementations jointly before they were released. The involved product groups
incorporated them in their product lines in the next product releases. The
architect’s network was kept alive and was used to obtain conformance and
agreements over the different product group borders.

Project management for creating the platform was set up incrementally,
based upon and using the resources of the product creation projects that
already existed in the organisation. In a similar way the support organisation
was set up.

As changes in the imaging platform can have company-wide effects,
change-control boards were established before the release of the first com-
ponents. Since an evolutionary approach was envisioned, future adaptations
were inevitable and carefully planned for. The change-control boards had to
decide when and how to introduce changes, balancing long-term and short-
term objectives. Separate change-control boards were set up for architecture,
components, interfaces and information models. A program steering commit-
tee, consisting of managers from different product groups, was responsible for
the overall planning of the program.

238 15 Philips Medical Systems

Growing

Growing the platform was done in several directions simultaneously. The
architecture evolved to include more domain-specific functionality. Other de-
velopment groups became involved, both as users and as members of the ar-
chitect’s network and software community. Existing functionality within other
products was migrated to the platform. In addition, third-party software was
selected to be included in the platform as well.

A pragmatic approach was used for growing the platform. Domain-specific
parts were developed in-house, taking full advantage of the expertise of the
product groups. Non-domain-specific commodity software was bought on
the market. Initially, the platform was designed not to be too generic (see
Fig. 15.3) During conception it covered mainly the needs of the three involved
product groups and the envisioned few next users. When constructing the ini-
tial software components and interfaces (birth), the scope was further reduced
to cover only a part of the needs of the directly involved product groups. After
the initial release of the platform, the scope was enlarged again to support
the needs of a growing number of product groups. Presently, more than ten
product groups use the platform.

Growing the architecture and functionality of the platform implied that
many interfaces and components were included. Often this functionality ex-
isted already, but in many cases improvements and new features were incor-
porated. Care was taken that during the evolution of the platform it always
consists of living2 components and interfaces. After first component or inter-
face release there is always a working version available, which can be used
by anyone who needs it. No component is released if it cannot be used with
the other components in the platform. The data models are always growing
through the inclusion of requirements for new functionality. The data models,
too, are alive: for each model element, there are components using it. The no-
tion of living components, interfaces and data models has proven to be crucial
to build, verify, validate and test software upon a basis of already existing and
tested software.

To involve a growing number of product groups, there is a continuous
activity to update the roadmap and to plan the platform activities. This is the
only way to reach optimal benefit for the increasing group of platform users.
Each product group has its own roadmaps, which involve planning when and
what to use of the platform. No one is forced to use the complete platform:
every group is able to decide the pace of the evolutionary introduction of
the platform within its own development. Still, a product group needs good
reasons to redevelop functionality that is already available in the platform.

Presently, Philips aims for full-scale adoption and increasing maturity of
the platform. The platform content has to cover the needs of all product
groups, but to stay focused on generic functionality at the same time. Through
2 “Living” means that the component or interface is well tested and ready to be

used

15.3 Approach 239

active support of the professional software community and an accompanying
maintenance and support organisation, the imaging platform is becoming ma-
ture and stays healthy. It can and must be used by all product groups.

15.3.2 Current Development Approach

Business

At the start, it was known that reuse is not a free lunch but needs time
and investments. Part of the invested effort was spent by people that were
originally assigned to existing products. Increasingly, people who have been
working in release projects were moved towards platform component projects.
Their expertise and their software moved with them. The imaging platform
is growing towards a self-supporting activity within Philips, as investments of
previous years have become profitable.

The business model of the platform development does not aim to max-
imise profit for the platform group. A model that is profitable for the product
groups works better. In practice, this means that these product groups to-
gether fund the software development of the platform components. They get
the platform software much cheaper than if they would have developed it
themselves, although the platform software is often more generic than what
they need.

The product groups focus on creating the software that makes their prod-
ucts competitive. Although financial calculations were not made in advance
explicitly, it was clear that the growth in the number of software engineers
across the company was becoming too expensive in the long-term. It was clear
that there would never be enough people in the organisation to produce all re-
quired software in the product groups themselves. Software development had
to be shared, and even outsourced.

The platform development model reduced this pressure significantly. The
platform components are built and maintained with about 1.6 times the num-
ber of people necessary for a single product group to develop the software
itself at the same time. Since there are several product groups using the plat-
form, each of them has to pay only a small part of this 1.6 factor. Payment
is done on a yearly basis and dependent on the part of the platform that is
used by the product groups. The funding model has evolved over the years.
Philips funded the platform development centrally at the conception phase.
Presently, all participating divisions pay for it on a yearly basis.

In Fig. 15.4 the business consequences of platform development are de-
picted. If no platform development is done, the software engineering cost grow
linearly over time see, the No Reuse line. Different product groups, e.g. PGa,
PGb and PGc, using the platform will follow a Reuse curve, which involves
initially more effort, but over time drops under the No Reuse line. Depen-
dent on what is used from the platform the product groups will follow different

240 15 Philips Medical Systems

time

Organisational tension
rises, then drops steeply
once the break-even
point is passed

No reuse

Reuse
PG a

PG b

time

PG c

S
W

-e
ng

in
ee

ri
ng

co
st

Fig. 15.4. Business consequences of the platform development

curves. The time and pace of the introduction of the platform in a department
group determines the position that the particular group has on the curve.

In almost all groups, the tension in the organisation against using the plat-
form is growing until the positive effects of reuse begin to show. Initially, a lot
of effort is invested, while the payback is still invisible. Developers and project
managers focus on the negative points. The time needed to introduce the plat-
form is seen as evidence for it being counter-productive, and people want to
abandon platform use. Management has to be strong to actively support the
platform use in that time. After the break-even the tensions drops very fast,
and the willingness of using the platform increases equally fast. Because differ-
ent product groups are at the break-even point at different moments in time,
the growing tension is a continuous attention point of the platform develop-
ment management. Part of the tension can be reduced by delivering those
parts of the platform that are important for the groups with the highest level
of tension, thus helping them to reach their break-even point sooner.

Architecture

The architectural requirements for the imaging platform are as follows:

• Facilitation of evolutionary migration: the only way to perform the transi-
tion to a widespread use of the platform was to start with a small basis and

15.3 Approach 241

extend it in an evolutionary way. The product groups should stay in busi-
ness during the transition, and revolutionary approaches were not deemed
feasible. The architecture and components should be based upon existing
software in the products, and then transformed into platform components
on a piece-by-piece basis. This leads to a component-based architecture.

• Technology independence: technology is changing and the platform should
be based upon commercial, changing, software. The product groups have
their own pace in adopting new technology. Therefore, the platform should
be designed as independent as possible from this third-party software, and
at any time be able to cope with certain differences in technology. To
solve this issue, patterns such as bridges, adapters and converters were
introduced.

• Suitable for a range of low-end and high-end systems: the product lines of
the product groups were covering low- and high-end products. Therefore,
the architecture has to support this, and allow for different implementa-
tions – with different quality attributes – of the same functionality.

• Minimal dependency among components : the components should be as
orthogonal as possible from each other. This simplifies the transition as
product groups can initially select only the platform functionality that
they really need.

• High degree of flexibility: the components should be based upon exist-
ing software. This eases their introduction in the different product lines,
since it can gradually replace existing software. Moreover, it facilitates the
introduction of components, and consequently avoids bottlenecks during
development, since most functionalities are already available.

The resulting architecture is open and extensible (Fig. 15.5). The plat-
form consists mainly of components and interfaces in the lower three levels
in Fig. 15.5. It consists of common software and software used by several de-
velopment groups. The System components layer mostly comprises of third-
party commodity software. They are chosen to provide the basic services.
Middleware components is the core of the platform and consists of medical
middleware that is used by all product groups. Most parts of the Business-
specific components layer do not belong to the platform. Their functionality
is too specific and is only used by one or a few product groups. Should this
change, provisions are made that commonality may be extracted from such
components, which then may become part of the platform.

The reference architecture is defined by components, connectors and their
respective semantics. Components are the reusable units of the architecture,
to be selected, configured and used by the platform users. Configuring deals
with ‘tuning’ the behaviour of a component via initialisation and other param-
eters. Besides straightforward component selection, this is another important
variation mechanism, suitable for dealing with varying quality requirements
such as performance.

242 15 Philips Medical Systems

System components

Middleware components

Business specific components

Automation products

Applications

Services

Base

Products /
workspots

Interactive products

... ...

Fig. 15.5. Philips reference architecture for the imaging platform

The connectors are the interfaces which are much more stable than the
components. Through these interfaces all users connect components to the
platform. Interfaces are conceived as contracts between a server and a client.
Seen from the viewpoint of the client, the server provides interfaces that offer
functionality. However, in order to access that functionality, it is required
that the client implements an attach interface.3 Interfaces are well managed
by change-control boards and this guides the evolution of the architecture.

The semantics of the platform are captured in information models, which
improves the stability of the interfaces [147]. The information models are used
to interchange data over the interfaces. Therefore, the data semantics are not
reflected in the interfaces. The interfaces were designed to deal with generic
data access functions only. In particular, data access is abstracted in a uniform
way, independent of whether it resides on the network, a database, a file or
other media.

Process

Development of the imaging platform can be seen as a large domain engineer-
ing effort. Commonalities with respect to image handling across the different
modalities are resolved in this platform. Application engineering is the de-
ployment of the platform in the various product groups in order to create

3 This model of provided and required interfaces is further worked out in [75]

15.3 Approach 243

the complete systems. In this case, domain and application engineering are
strictly separated in different organisational units.

The generic component suite of the imaging platform is developed in an
evolutionary way. As a rule of thumb, a regular heartbeat leads to two new
version releases per year. The second is fully forward-and-backward compati-
ble with the first one, but this is not necessarily the case for earlier versions.

A mature development process has helped to establish the software product
line. It has proven valuable that the organisation that is responsible for the
imaging platform has a predictable, repeatable and quantifiable process. The
platform group is on CMMI level 3, whereas most of the product groups are
on CMMI level 2 (some are on level 1, some on level 3). Following are detailed
explanations of some important aspects of key process areas of the imaging
platform organisation.

Requirements Management

All requirements for the imaging platform are gathered in a database. This
can be in the format of use cases, problem reports, or change requests of the
various product groups. At any time, their status is visible to all the product
groups within Philips. For each new release, the platform and product groups
discuss which requirements are in and which are out of scope. The results of
this discussion are reflected by appropriate status changes in the database.

Project Management

Managing projects is done in accordance with regular CMMI level 3 prac-
tices. That is, projects are phased and progress is monitored according to
well-established procedures and metrics. Furthermore, there is a lot of em-
phasis on managing risks. Product risks for one or more product groups that
are related to safety or security are identified and carefully tracked. Mitigation
measures are actively tracked.4 Specific quality-assurance aspects and mea-
sures are included in the project plan. The quality-assurance department of
the platform group regularly verifies compliance with internal processes. The
product groups are entitled to execute audits on the platform projects.

Supplier Management

Outsourcing of platform development is centralised at the platform devel-
opment group. Because a single architecture is used, software obtained via
outsourcing can be used within the whole product line. To reduce the num-
ber of outsourcing-related contacts, the platform development group manages
the outsourcing of software that is used by many platform users. Up-to-date
architecture knowledge is always available at the organisation that does the
outsourced work.
4 In many countries, the approval of legal authorities is required to sell medical

devices. These agencies need in-depth insight into all kinds of risk-regulation
measures that are taken

244 15 Philips Medical Systems

Configuration Management

Identifying the right components to share over the product line is one of the
most challenging activities in development. Before the users and developers
decide what functionality should be included in the platform, it has to be
decided which products are going to use it. Planning of future use has to
be taken into account as well. Next, the relationship of these assets with
configuration items has to be established accurately. This may be an n:m
mapping.

The verification of completeness and correctness of components requires a
framework in which the components execute. Part of the verification requires
integrating components in the receiving products. For example, the perfor-
mance of image-processing components may be different in X-ray equipment
than it is for magnetic resonance imaging. This requires special organisational
measurements from both the platform and product groups.5

In addition, software configuration management concerns the control of
the evolution of complex systems. Most Philips products are developed at
different sites. This requires that versions of software sources are available at
different locations in the world. Furthermore, product releases are developed
in parallel projects. At any certain point in time, the same software sources
must be ready for configuration according to various requirements for the
different product releases. Configuration management systems must support
software merging to handle various development streams for multiple sites and
multiple projects.

It is even more important to manage the development streams from a
product line perspective in order to reduce the number of software merges
and software testing. The software architecture deals with this by introducing
relatively independent component suites that can be reused as packages by
the different development groups. The independence is partially established
by using only a few very generic interfaces for communication between the dif-
ferent suites. Of course, each suite enables configuration to make it adaptable
to the different users’ desires.

Change Control

Change control asks for special attention due to the large range of stakehold-
ers. Change-control boards are organised to discuss change requests and decide
on improvements for the coming releases. The versioning strategy of shared
components must be in line with the release strategies of the various product
lines of the business. Change control requires attention during the whole life-
cycle of the product, including the maintenance phase after (internal) delivery
of components.

5 More information on dealing with reuse for different groups of users can be found
in [72]

15.4 Results and Impact Evaluation 245

Organisation

Many factors contribute to the success of the organisation. An important
aspect is stability. Throughout the development of the platform, no major
disruptions have occurred in investment, or in the scope of the platform.
There were only minor changes in staffing and management. Everyone involved
is aware of the activity and its goals. Moreover, product line development
originated as a bottom-up activity, and this is still an important driver. To
improve their knowledge of the products. the platform developers are placed
as closely as possible to the product groups.

The platform development group originally was a separate team within
a special product group. This caused tension because people working on the
platform were also partially involved in product development. Both tasks de-
manded time and attention. Eventually, the platform group turned into a sep-
arate department in the product group. The remaining parts of the product
group became a platform user too, although still within the same organisa-
tion. This procedure increased and lengthened the tension curve within that
specific product group. Presently, the platform group has its own organisation
and a central responsibility for all Philips development groups. An important
reason for this is to ensure that all product groups have the same relationship
with the platform group.

Over the years, several companies were acquired by Philips. As a result,
new and unexpected product groups became platform users. The new groups
were treated in a similar way as the other product groups. Their architects
became involved in the architect’s network and the platform planning and
roadmaps were adapted to their needs. At the same time, their own roadmaps
were altered to introduce the platform software in evolutionary ways.

At the start, there were very few facilities for cross-division communica-
tion. In fact, e-mail was the main tool. Early on, an intranet website was estab-
lished for publishing and distributing relevant architecture and requirement
documents. This site is still used and continuously improved. Co-operation
presently occurs over country borders on a day-to-day basis. Teleconferencing
facilities are important to enhance communication. Face-to-face meetings are
held on a regular basis, even if major travelling is required.

15.4 Results and Impact Evaluation

There is a business model in place to be able to fund the domain engineering
unit. Product groups pay a license fee for platform use. It is a useful model,
but it needs further improvement to tune the internal customer relationship.
The business enforces the use of the platform by all application engineering
groups. Technical roadmaps for domain and application engineering are in
place, although they are still not completely aligned.

246 15 Philips Medical Systems

A marketed product line is in place under the name ‘Vequion’. It refers
to a set of products that are interoperable and that apply the same user
interface. Using the platform makes it easy to be Vequion compatible. In fact,
the Vequion products are those that use the platform.

There is a single product line architecture available, which is supported
by a platform, interfaces and data models. It is used to different degrees by
the product groups. Each group specialises the architecture and platform for
its own use.

The requirements of the domain and application engineering groups are
moving together to be treated as a single set of product requirements.

The domain engineering group is at the time of writing this chapter at
CMMI level 3. The other departments are also moving towards this level.
The practices are tuned towards use in a product line engineering context.
Currently, mainly technical assets are shared between groups. Only a few
best practices are shared.

After some intermediate stages, where platform development was part of
a product group, there is now a clear organisational separation between ap-
plication and domain engineering. Many teams deal with product-line aspects
over department borders. These teams meet often, both face-to-face and via
teleconferencing. Feedback is mainly obtained through change-control boards
that are set up for separate issues. The integration is not always ideal, which
increases tension. A few departments still do a lot of independent develop-
ment, leading to duplicated effort.

15.5 Lessons Learned

Co-operation was established such that definitions were made jointly, but
implementations were done separately. From experience, it was known that
having a single group to define and implement a platform would not work in
the decentralised Philips organisation.

Strict interface definition and change control was essential for the Philips
reuse program, in which various parties develop software components for one
overall software framework. As planned, the interfaces were very stable, thanks
to the separation of the information models (semantics) from the interfaces
(connectors). The information models changed frequently, but since they can
be developed rather independent of the remainder of the software – and espe-
cially the interfaces – the effect of each change remains local.

Reuse adoption has to be anchored in processes. The organisation has to
support the involved people, who need time to learn how to understand and,
more importantly, trust each other well.

Evolutionary growth must be planned and guided carefully. A good initial
architecture is crucial for this. This helps new architects to quickly understand
the choices, which eases the adoption of these choices.

15.6 Outlook 247

The platform and its architecture significantly increase the number of pos-
sible products that can be assembled. There is a reference architecture, imple-
mented in a shared imaging platform, whose parts are configured in previous
unexpected and unforeseen ways.

A risk of using components across multiple product lines is that the func-
tionality of the component may be too generic for specific use. The product
line has to extend the component for its own specific use. There is a mismatch
between the assumed and the actual value of a component. This especially
holds when the component does not cover the complete product requirements.
In this case, the actual value is a lot lower than the assumed value. Philips
has learned this lesson. It was expected that a product group could easily de-
liver the required functionality, based on a reusable and tested component. In
practice, it occurs that a product group has to extend the reusable component
significantly, without having the flexibility to change the component code. The
Inner Source development model reduces these situations. It is meant to sup-
port the adoption of improvements to the platform done by product groups.
This leads to sub-optimal solutions. Sometimes, workarounds reveal hidden
bugs in the component or cause unexpected system behaviour.

15.6 Outlook

Philips uses a pragmatic, bottom-up approach to produce a platform that is
used by a growing number of software product groups within Philips. It was
started in a well-understood domain that was central to the company. It has
grown towards a large collection of common software in medical imaging and
viewing. Adoption of the platform was planned by selecting the right common
software first. Management support increased the platform use from the very
beginning.

The platform did not come for free. Many investments were necessary, both
in resources and in learning how to co-operate. However, people learned to
trust each other over department and country borders. At any given moment,
there is a lot of tension in the organisation, rising from the conflict between
short-term product delivery and long-term investment. As soon as the tension
reduces in one part of the organisation, it rises elsewhere. This tension is dealt
with through stable and sustained management support for software product
line engineering.

The initiative started small and gradually involved more people and prod-
uct groups. From the very beginning, real projects were involved as users of
the (incomplete) platform, and architects from all product groups were re-
sponsible for the reference architecture. This reinforced the commitment of
the product groups. Development of the software community at a company
level is an essential element to promote reuse in the long-term.

By now, it has been shown that development effort can indeed be shared
and costs can be reduced. The economics of scale act through the fact that

248 15 Philips Medical Systems

many distinct product groups use the software. This has increased the market
of the platform product group.

The business model still needs improvement. The requests of all product
groups need to be satisfied in an objective and fair manner. Feedback between
platform users and providers must be improved. A model based on open source
development, dubbed Inner Source, may improve this.

The scope of the product line has to expand to serve the needs of all
product groups. In addition, more domain-specific shared functionality at a
higher-abstraction level must be incorporated in the platform.

Philips cannot perform without the existing product line and its platform.
There are simply not enough people available to develop similar software in
parallel projects. However, the overall satisfaction is not optimal. Partially,
this is due to the tension in the organisation that rises near the break-even
point (Fig. 15.4). At such moments, developing on your own still seems to
be cost-effective, and result in better products. But given time, the break-
even point is reached, and eventually each product group accepts and even
embraces product line engineering as a way forward.

16

Siemens Medical Solutions

with Andreas Reuys
Klaus Pohl
Josef Weingärtner

Company facts of Siemens Medical Solutions

Organisational size: 100 developers.
Starting Mode: Bottom-up.

Experienced improvements:
— Reuse level: ∼50%.
— Reduction of development cycle time: ∼25%.
— Reduction of cost of quality: ∼57%.

Business: The adoption of product line engineering concepts
was focused on effort reductions.

Architecture: The architecture is based on a client–server architec-
ture. Only a high-level architecture description was
developed for the reference architecture.

Process: The V-model was extended to support product line
engineering for testing.

Organisation: The shift had an impact on the organisation, as role
descriptions had to be extended.

250 16 Siemens Medical Solutions

16.1 Introduction

Siemens Medical Solutions is one of the largest companies providing hospital
applications. The portfolio of products covers nearly everything from X-Ray
tubes, over Magnetic Resonance Imaging (MRI) and Computed Tomography
(CT) scanners to complete infrastructure support in hardware and software
for hospitals and all other medical practitioners.

The department Health Services Image Management1 specialises in
software for image distribution and image post-processing. The supported
physician is the radiologist. The task of the radiologist starts with patient
registration and ends after several activities with reporting and archiving of
the images in the report repository (see Fig. 16.1). This workflow is standard-
ised in the “Integrating the Healthcare Enterprise initiative” [69].

Fig. 16.1. Integrated healthcare environment workflow

1 From here on, the term ‘Siemens’ is used as a short hand for ‘Siemens Medical
Solutions Health Services-Image Management’

16.3 Approach 251

The experiences described below stem from the development of the SIENET
COSMOS product line of a picture archiving and communication systems. The
SIENET COSMOS product line is developed with around 100 developers, in-
cluding requirements engineering, programmers, testers and other stakehold-
ers. Its development is distributed over several countries. SIENET COSMOS
is one of the three running product lines, the other two being SIENET SKY
and SIENET Magic.

The University of Duisburg-Essen co-operated in the introduction of prod-
uct line engineering, in particular on the subject of requirements engineering
and product line engineering, which are specialisations of the Software Systems
Engineering group. This group had an ongoing co-operation with Siemens
starting 1999, and thus had insights in the Siemens, internal processes.

This chapter deals with the introduction of product line engineering in the
testing process at Siemens.

16.2 Motivation

The main objective of the introduction of product line engineering at Siemens
was to reduce development effort. Due to the very high quality-assurance costs
in the medical domain, the focus was on the reduction of testing effort [112].

16.3 Approach

16.3.1 Adoption Process

The predecessor of the SIENET COSMOS product line consisted of two rather
similar applications. While planning to improve these applications and add a
third, the decision was made to develop all three applications with the same
assets, because large parts of the functionality were common to all products
and it was expected that components were usable in each of them. Besides
components, requirements, architecture and test cases were also expected to
be reusable.

The decision to develop these applications with product line engineering
was not driven by management. The management did support the technicians’
intentions to come to a more efficient development by reusing assets, but
even though they knew about product line engineering, they decided not to
establish formal domain and application engineering processes. The following
were the reasons for this decision:

• Budgets and resources were already planned.
• There was a tight schedule.
• Management was not sure whether successes that were achieved elsewhere

could be repeated in the context of this specific project.

252 16 Siemens Medical Solutions

Management associated the introduction of domain and application engi-
neering with separate teams, additional training and start-up overhead that
could not be dealt with in the original plan and schedule. Thus, the project
managers decided that only the inevitable activities from product line engi-
neering were adapted to the company’s needs. In essence, this was modelling
of variability, which included

• defining commonalities and differences in requirements and architecture
• associating variants to the planned applications
• specifying common and application-specific components.

A challenge was that development of the product line was distributed over
the world. There were no technicians familiar with product line engineer-
ing in the already-staffed project. Therefore, it was intended to concentrate
these product-line-specific activities at a single location, more precisely at
the project headquarters in Erlangen, Germany. The facilitator had only to
support the introduction of variability at this location and that led to easier
communication and better support of the adoption process.

The considered part of product line introduction, a case study in testing
software product lines, was conducted between March 2002 and September
2003. Eleven meetings were held during that period, each of which had lasted
between two days and a whole week. The final meetings were used to measure
data and to document the case study.

The case study deals with the introduction of ScenTED (Scenario-based
TEst case Derivation). ScenTED is a method for testing software product
lines, developed at the University of Duisburg-Essen.2 The method builds
on two basic ideas: scenario-based refinement from use cases to test cases
and the preservation of variability. Variability is defined during requirements
engineering and is maintained throughout domain engineering until testing.
Details of the ScenTED method can be found in [78] and [113].

16.3.2 Current Process

This section explains the effects of product line engineering on Siemens. The
effects are discussed along the four dimensions of the BAPO framework. Based
on the nature of the case study the focus is on the process dimension.

Business

Based on the developers’ intention it was planned to reduce effort and time
for the applications within the considered SIENET COSMOS product line. In
fact, it resulted in a reduction in development cycle time to about 75%. These
development cycles are only roughly comparable, because there were different
sets of requirements to be implemented, different stakeholders, tools, etc.

2 This method is described in more detail in [114]

16.3 Approach 253

The reduction in development cycles on a long time-scale bears the hope of
accelerating the incorporation of customer wishes. Medical solutions are still
very monolithic applications and require a very high quality as human lives
depend on them. Therefore, customer requirements cannot be incorporated
immediately, but must be postponed to the next development cycle. The re-
duction of the development cycle thus enables a faster response to customer
desires.

Architecture

Siemens uses two views on the architecture. The high-level view contains the
interactions of the servers and the clients. The low-level view bears all details
of component interactions. It was not intended to create a reference archi-
tecture due to the limited amount of planned applications. Therefore, only
application architectures were created.

Figure 16.2 shows one view on a very generic architecture of the client
and its interface to the archive server. The client is depicted with its main
components and labelled as SoftCopyReader (SCR-COSMOS). The server
and its clients communicate via the HTTP protocol or the new high-speed
protocol IMACCESS.

The client contains the user interface (Viewer), the Control element and
the specific functionalities depicted by the boxes labelled Ext1–Ext3. Specific
functionality is implemented within post-processing applications. The appli-
cations implement the common functionalities of the product line, the variant
functionalities and even external functionality from the Syngo library, which
provides dedicated radiology support. Syngo functionalities may be added to
any COSMOS client.

Depending on the application, a specific control component, a user inter-
face, functionality and communication protocols are selected and bound. This
binding is defined in the detailed design of the clients’ architecture. However,

SCR-COSMOS

Archive

post
processing
ApplicationsViewer-

Ext1Control COSMOS
Interface

Component

HTTP

Application Container

IMACCESS

Ext2

Ext3

Fig. 16.2. Generic client architecture

254 16 Siemens Medical Solutions

some applications allow the binding of functionalities during run-time as they
contain a run-time interface to the syngo library.

Process

Siemens develops and tests based on the V-Model cf. (Fig. 16.3). Once the
unit test is passed, three test phases are performed: component test, system
integration test and system test. The component test supports validation of
the components’ specific requirements. After that the system integration test
verifies the interfaces and interactions among the components. The system
test validates the requirements that have not been tested so far and validates
the clinical workflow scenarios. The system test also realises the product line
application test.

The system specification and architecture are described by structured text
documents. Additionally, these documents are supplemented with exemplary
scenarios, e.g. the system specification with use cases and system architecture
with the standardised clinical scenarios. Fig. 16.3 depicts the development
documents in the left part of the V-model. The right part shows the different
test phases used by Siemens.

ScenTED consists of three activities to perform the system test. The ap-
proach was introduced to Siemens and adapted to their system test to validate
three applications of the SIENET COSMOS product line. The following are
the three main activities of ScenTED:

Product Development

Component
Test

System
Integration

Test

System
Test

Component
Specification

System
Architecture

System
Specification

System
Scenarios

Architecture
Scenarios

Component
Scenarios

System
Requirements

System
Use Cases

Architecture
Description

Clinical
Scenarios

scope of ScenTED introduction

Fig. 16.3. V-Model development at Siemens

16.3 Approach 255

Use Case Name: Create Report

Goal: Create a patient report for the referring physician.
Description: The radiologist opens the patient record and the

patient’s images to create the report for the
referring physician. Thereby she has all images
available. She creates the report by dictating it to a
secretary or tape.

Precondition: The new images are available on the server and
the radiologist has been notified.

Postcondition: The patient record has been marked as “report
dictated”.

Result: A printed report has been created.
Variation Points: 1.1 In case of product A or B the radiologist may

open the images via invocation X.
1.2 All products may open the images via
invocation Y.
2. For product A the images may be opened and
processed in other applications.

Scenarios: …

Use Case Name: Create Report

Goal: Create a patient report for the referring physician.
Description: The radiologist opens the patient record and the

patient’s images to create the report for the
referring physician. Thereby she has all images
available. She creates the report by dictating it to a
secretary or tape.

Precondition: The new images are available on the server and
the radiologist has been notified.

Postcondition: The patient record has been marked as “report
dictated”.

Result: A printed report has been created.
Variation Points: 1.1 In case of product A or B the radiologist may

open the images via invocation X.
1.2 All products may open the images via
invocation Y.
2. For product A the images may be opened and
processed in other applications.

Scenarios: …

Fig. 16.4. Domain use case Create Report

1. Creation of activity diagrams representing the control flow of use cases.
2. Derivation of domain system test case scenarios.
3. Derivation of application system test cases.

Each activity is illustrated with a simplified example.

Creation of Activity Diagrams Representing the Control Flow of a Use Case

The radiologist’s goal is to create a report of a patient. The use case con-
sists of the attributes that are known from single system development (cf.
Fig. 16.4). The attribute variation points stresses the product line context,
whereas the variability within the use case is specified in that attribute.

Siemens creates UML activity diagrams in addition to the use cases during
requirements analysis. The activity diagrams specify selected scenarios. These
activity diagrams are extended by the testers based on the use case description
and exception scenarios. The activity diagrams are extended with variability
during the introduction of ScenTED [113].

The activity diagrams are modelled in IBM RationalRose. Fig. 16.5 shows
such an activity diagram. The stereotypes specify the applications that
can perform an activity. A stereotype is defined for each possible combi-
nation of applications. In Fig. 16.5, the stereotypes <<Product A>> and

256 16 Siemens Medical Solutions

<<ProductA>>
openImagesIn

OtherApplication

dictateReport

scroll Images

<<ProductAB>>
openImagesViaX

openImagesViaY

Fig. 16.5. Activity diagram for use case Create Report

<<Product AB>> specify the variants and their corresponding applications.
Activities without a stereotype are applicable in every application. Variants
are called optional if they can be performed optionally in addition to the
common flow of events. An example is openImagesInOtherApplication.

Derivation of Domain Test Case Scenarios

Domain test case scenarios for the system test are derived from the activ-
ity diagrams using an adapted branch coverage criterion.3 The results of the
derivation from the activity diagram shown above are two domain test case
scenarios (Figs. 16.6 and 16.7). The scenario DT 02 is applicable on all prod-
ucts. The scenario DT 01 can be applied only on the products A and B, the
optional activity can be performed only in product A.

3 Details concerning the derivation are beyond the scope of this chapter, but can
be found in the description of the ScenTED technique [79, 78]

16.3 Approach 257

Radiologist : Actor

dictateReport

checkStatusOnSystemServer

startApplication

ApplicationStartedUp

<<Product AB>> openImagesViaX

displayImages

scroll-Images

<<Product A>> openImagesInOtherApplication

finishReporting

shutDownClient

This Test-Case-Design is only
applicable on products A and B

System-Client

V1.1: Activity works on
products A and B only

V2: Optional variant:
Activity works on
product A only

StartUp and
Preconditions

Scroll image via
mouse-wheel

Set the reporting
state to finished

Result and
post-condition

Fig. 16.6. Domain test case scenarios DT 01

Domain test case scenarios are extended with information about test input,
acceptance criteria regarding the output for each step, additional steps to
ensure the pre-condition and additional steps to verify the post-condition and
the result. The documentation of these test case scenarios is also recorded in
IBM RationalRose.

Test case scenario DT 01 is explained as an example. The domain test case
scenario starts with steps to ensure the pre-conditions mentioned in the use
case. These are annotated with the remark StartUp and Pre-conditions. They
are followed by the core scenario steps of the test case scenario. These steps
are detailed, e.g. the step scrollImages is extended by the information that
the scrolling shall be done with a mouse-wheel. The test case scenario ends
with steps that verify the post-condition. These steps are marked with notes,
again. Domain test case scenarios contain variability, as shown in Figs. 16.6
and 16.7. The optional activity (openImagesInOtherApplication) is still part
of test case scenario DT 01. Limitations regarding the applications are de-
picted as darkly coloured notes (V2 is only applicable on Product A). Thereby
it is made explicit that the activity openImageInOtherApplication is only

258 16 Siemens Medical Solutions

Radiologist : Actor

dictateReport

checkStatusOnSystemServer

startApplication

ApplicationStartedUp

openImagesViaY

displayImages

scroll-Images

finishReporting

shutDownClient

This Test-Case-Design is
applicable on all products

System-Client

V1.2: Activity works on
all products

StartUp and
Preconditions

Scroll image via
mouse-wheel

Set the reporting
state to finished

Result and
post-condition

Fig. 16.7. Domain test case scenarios DT 02

applicable in test cases for the application A. The test engineers for appli-
cation B may use this test case scenario, but will skip this activity. As the
considered applications do not contain any run-time variability, all variations
can be described in this way.

Derivation of Application Test Case Scenarios

Figure 16.8 shows the test case scenario for application B, derived from the do-
main test case scenario DT 01. The application test cases are administrated in
the tool Mercury TestDirector. The comments for the pre- and post-conditions
within the domain and the scenarios have been reused in the Comment field
in the tool. The scenario ends with the steps to verify the result and post-
conditions.

The variability that was included in the domain test case scenario has been
bound in the application test case scenario. Binding consisted of the deletion
of optional steps that were impossible within the application at hand. As a
result, the step openImageInOtherApplication has not been taken over to the

16.3 Approach 259

Fig. 16.8. Application test case scenario for application B

application test case scenario, as shown in Fig. 16.8, because the activity is
not possible for application B.

It must be recorded which test case scenarios apply to which applica-
tion. This way the reusable test case scenarios are traced and copied within
the next application. Table 16.1 shows this for the considered use case and
the applications A, B and C. The domain test case scenario DT 01 includes
a variant that preserves the application of the scenario on all applications:
“OpenImagesViaX ”. This optional variant is not valid for application C.
Table 16.1 can be used to identify the test case scenarios that are applica-
ble for a specific application. The domain test case scenario DT 02 is used
to test common functionality. Therefore it is used in all three considered ap-
plications. These test case scenarios are reused via an easy copy-and-paste
operation directly within another application. The test case DT 01 includes
variability. It can directly be used in application A and with adaptation in
application B, because the variant V2 is not part of application B. As vari-
ant V1.1 openImagesViaX is not part of application C, it is not applicable
there.

Table 16.1. Application test case scenarios of the three applications

Application Origin of the application test case scenario

A DT 01, DT 02
B DT 01 without V2, DT 02
C DT 02

260 16 Siemens Medical Solutions

Organisation

Activities and responsibilities have changed within the development, even
though no product line engineering process was introduced partially. There
are responsibilities for

• Business manager : the business manager is responsible for the plan-
ning and product management for the different marketed product lines
(SIENET COSMOS, SIENET SKY and SIENET Magic) as well as for
the specific applications within each marketed product line. The business
manager is considered a co-ordinator towards the customers. He defines
the product line in a way that it will be an economical success and defines
the sales contacts accordingly. He has to decide which features are more
important and will thus be implemented. He also decides which markets
he wants to deliver to with highest priority.

• Product manage: the product manager is responsible for requirements
engineering of the product line as a whole as well as for the individual
applications. Variants are specified as mentioned in the specification. In
communication with the business manager, the variants and common func-
tionalities for the next release are planned.

• Research and development engineer : based on the common requirements
and variants the high-level architecture is defined. The variants are refined
in modules within the low-level architecture. The coding of common and
variant components starts once the low-level architecture exists.

• Test engineer : the test process is adapted as described in the process di-
mension of the framework. The test process validates the description of the
variability and creates reusable test cases for the different applications.

• Technical services engineer : there are a lot of technical services that are
provided for all applications and through all development stages, e.g.
change reporting and management as well as traceability. All of these have
changed slightly in order to take variability into account. The process de-
scriptions as well as the tool usage had to be changed and the correct
usage was verified by the facilitator.

• Product development manager : as overall project leader, he or she is re-
sponsible for the development activities of all derived applications. He or
she sets priorities to the different applications. The sub-project managers
report to him or her.

• Sub-project manager : a sub-project manager is responsible for a single
derived application. He or she has to schedule his own application and has
to consider the interfaces with the other sub-project managers.

These roles are put into practice using a matrix organisation (cf. Fig. 16.9).
Central to the organisation is the assignment of competences and author-

ities. The extension is visible only in the additional role of the product devel-
opment manager. The extensions of responsibilities in development roles are
invisible in this picture.

16.4 Results and Impact Evaluation 261

Project Manager

B
us

in
es

s
M

an
ag

er

P
ro

du
ct

M
an

ag
em

en
t

R
es

ea
rc

h
an

d
D

ev
el

op
m

en
t

T
es

t

T
ec

hn
ic

al
S

er
vi

ce
s

P
ro

je
ct

O
rg

an
is

at
io

n

Product Development Manager Sub-

Project Engineer Functional Manager

Fig. 16.9. Matrix organisation structure at Siemens

16.4 Results and Impact Evaluation

The ScenTED approach to product line testing was evaluated regarding two
aspects: the resulting degree of reuse of test case scenarios and the test en-
gineers’ subjective judgement of usefulness. To this end, the degree of reuse
was measured after completing the test phase and a questionnaire was given
to test engineers.

The evaluation of used test case scenarios during application engineering
has shown that 27 test case scenarios developed during domain engineering

262 16 Siemens Medical Solutions

were reused in 63 scenarios in application engineering. This implies that 36 sce-
narios were saved comparing to single system development. This corresponds
to an economisation of 57% for the considered part of the system.

The test engineers’ opinions regarding traceability were determined with
a questionnaire on the support of ScenTED during the creation of application
test case scenarios with reuse. Statistical analysis of the results has shown
that the test engineers agree that ScenTED supports traceability to enable
reuse.4

16.5 Lessons Learned

Several other observations were made during the introduction of ScenTED.
First, early validation of variability is required. It has been observed that

requirements have to be validated and verified between a customer and a de-
veloper [105]. A similar observation can be made regarding variability. The
textual descriptions used at Siemens led to different interpretations by dif-
ferent stakeholders, such as product management, software architects, pro-
grammers and test engineers. Explicit modelling of variability led to more
discussions and finally to a shared view among all stakeholders.

A second observation is that test engineers prefer application-related vari-
ability models. Methods and techniques must always be adapted to specific
organisations and projects, as both come along with specific goals and proper-
ties. The modelling of variability in UML using activity and sequence diagrams
has been adapted from earlier work [78, 112]. There, a distinction is made be-
tween variation points, variants and assignments of variants to applications.
Here, application assignments were made directly at the variation points in-
stead of variants for adapted modelling (cf. Fig. 16.5). This way, common
and application-specific functionality alike can be modelled and the concept
of variability is easier to grasp for the involved stakeholders. Application ca-
pabilities are directly modelled and there is no need to learn how to model
application-independent variants. This approach is much more intuitive for
people without a software product line background. An important prerequi-
site for the adaptation is that all applications are well known, because this
type of modelling does not scale up to many applications.

As a final observation, the organisation of test cases in a use case and an
application hierarchy was important. The testing of different applications on
a common basis requires structured support within the used tools, especially
the testing tool. Each application has a specific folder within the test tool.
Below this folder another set of folders was created: one for each incorporated
use case. Within each use case all test case scenarios relating to this use
case are organised. The test cases differ in the covered paths and data. This
folder organisation realises traceability to enable structured reuse. Whenever

4 Detailed results regarding this evaluation can be found in [112]

16.6 Summary 263

a new application has to test the use case createReport, one can open another
application, open the folder for that use case and take the test cases over to
the new application.

16.6 Summary

The experience described here focuses on the requirements and test level.
Here, variability was explicitly modelled in requirements and in test cases.
The modelling of variability in requirements helps to discuss the intended
differences among the planned applications within product management and
to communicate the commonalities to latter development stages. Modelling
variability in test case scenarios helped to perform a structured reuse of test
cases.

The reuse gained from ScenTED was up to 57% compared to the applica-
tion of single system testing techniques. The development of three applications
with the same assets led to an estimated reduction of development time to
about 75% compared to single system development. Although not in the focus
of the case study, it was observed that an early validation of requirements took
place and a repeatable process of test case derivation was conducted within
the project.

These results caused Siemens to adopt this process in their test process
description. The approach is used by the contributing department and prop-
agated within their site.

An obvious shortcoming is that the evaluated ScenTED technique lacks
integrated tool support. Although the relevant models can be created and used
in commercial tools like RationalRose or TestDirector, creating the activity
diagrams, deriving domain test case scenarios and determining application
test case scenarios still have to be performed manually.

17

Telvent

with Jesús Bermejo
Pablo Trinidad
David Benavides
Antonio Ruiz-Cortés

Company facts of Telvent

Organisational size: >1,000 developers.
Starting Mode: A configurable product for many clients with

changing requirements.

Experienced improvements:
- Server platform extended to other markets.
- Introduction of run-time variability.
- Improved reference process framework.
- Centralised roadmaps for platforms.
- Market platform in a different domain.

Business: Alignment of strategy and architecture.

Architecture: Use of dynamic abstract factory pattern in the plat-
form.

Process: Improved framework.

Organisation: Separation of domain and application engineering or-
ganisations.

266 17 Telvent

17.1 Introduction

Telvent is specialised in solutions in four specific industrial sectors: energy,
traffic, transport and environment. Its main clients are in the Americas, Spain
and China. With over forty years of experience in industrial supervisory con-
trol and business process management systems, Telvent executes projects and
provides technical services in the field of mission-critical, real-time control
and information management. Telvent provides outsourcing and consulting
services, and employs a technology-neutral philosophy. The company man-
ages IT and telecommunications infrastructure for an extensive international
client base.

17.2 Motivation

The development of software for control, supervision and management falls
within the category of complex system engineering. This type of software
deals with strong non-functional requirements such as time responsiveness to
accomplish real-time requirements for the control of complex systems, cus-
tomisability to cover different cultural contexts and national standards, and
maintainability. Often, critical systems are controlled, and upgrades must be
performed rapidly.

Software product line engineering can be used to manage variants for com-
mon issues in the field of control software such as multiple communication
protocols over the same channel, communications redundancy, extensive con-
trol at the remote terminal unit locations, remote configuration changes, data
transfer to and from databases and fault tolerance in the context of a dis-
tributed architecture with support for a growing number of communication
infrastructures. Many systems use predominantly long-distance communica-
tion, although short- distance communication may also be present.

This chapter summarises some aspects of software product line engineering
at Telvent for one of its core business domains. It focuses on the conception
phase of a product line targeting only a single product for which the require-
ments were expected to change widely. The experience shows how software
product line engineering was successfully applied as a technique to enable the
product to adapt to evolving requirements.

The customer asked for a real-time television software framework as part
of the product. They wanted software that could capture a television signal
from a card plugged into a PC and show the result on screen after apply-
ing some filtering and transformations. They did not really know which kind
of filtering and transformations the framework had to support in the future.
However, it was to be expected that after starting the development of the
framework, the customer would want more functionality with similar or im-
proved performance.

17.2 Motivation 267

Late changes in requirements generally involve reduction of functionality
and the loss of quality and time. In the situation at hand, many new require-
ments were expected to appear, and the architecture would have to be able to
support them. Support for change had to be part of the software architecture.

Here, classical requirements analysis would leave a lot of black holes that
would need to be solved before designing a flexible platform. Instead, soft-
ware product line engineering was used to create a platform that supports
the needed variability. Software product line development usually starts with
domain analysis, where the main features of the platform are detected. In this
case, the problem domain was thoroughly studied to define a product that
would fit not only the (future) requirements of this first customer, but also
the requirements of other companies in the same market with little effort.

To achieve this, the commonalities were analysed among the poten-
tial products that the different customers may request in the near future
(cf. Fig. 17.1). The first customer wanted to compose television signals,
bitmaps, videos and other images and apply all kinds of effects to them. The
results of an analysis of existing commercial products in the real-time televi-
sion market lead to additional requirements. Starting from this information,
the common requirements of the platform were determined:

• The software should draw a final image as a result.
• Several sources of images or layers compose the final image, e.g. television

signal capture, bitmaps, stored video, video streaming, text and 3D images.
• The layers overlap following a configurable order.
• Effects or transformations may be applied to one or more layers, e.g. black

and white, and transparency effects.

Drawing system

Layer 1 Layer N… UI 1 UI N…

1

1

1

*

Layer

Plug in

Effect 1 Effect N…

Effect User Interface

TV Platform

Fig. 17.1. Television software platform logical structure (UML)

268 17 Telvent

• A user interface has to be provided to control layers and effects.
• It must work 24 hours, seven days a week. If used for television retrans-

mission it must never stop working.

In short, the platform draws a sequence of layers, and optionally applies
any of a range of filters to them. The platform has to support any kind of lay-
ers, effects and user interface. Updates should be supported, but the execution
cannot not be stopped for maintenance.

The domain engineering team had to develop two major functional com-
ponents:

1. Drawing system: in charge of drawing layers and effects in the television
output.

2. Plug-ins system: because it was intended to be a 24/7 system, new ver-
sions and updating must be automatically installed at run-time without
stopping the system. Layers, effects and user interfaces are considered
plug-ins that easily connect to the drawing system.

The application engineering team was responsible for developing plug-ins
for specific customers. These plug-ins could be promoted to the platform if
more customers would demand them. In this case, the domain engineering
would take over their maintenance.

17.3 Approach

The process for software product line engineering described in [106] was used.
The following main sub-processes were distinguished:

• Domain engineering deals with core-asset development, where common
features are developed.

• Application engineering deals with product development, where products
are developed from common and specific features.

• Co-ordination deals with overall product line management, where synchro-
nisation between the other two activities is arranged.

This is the basis to improve the development process and to support the
needed variability. An important task is to decide which are the core-assets
and which are the customer’s product-specific features.

This section explains how the organisation was structured to deal with
the business needs. Next, we explain how the domain engineering team dealt
with the architecture. Especially, we consider the design of the plug-in system
that may be used in other contexts. Its origin is an existing design pattern to
automatically support the run-time connection of new plug-ins or components,
i.e. layers, effects and user interfaces.

17.3 Approach 269

17.3.1 Organisation and Business

Following the process structure, development was separated in domain and
application engineering groups. The domain engineering group was responsi-
ble for the platform development and the quality of the systems. The software
product line infrastructure has to provide solutions not only for existing sys-
tems, but also for future systems. It has to deal with the rapidly evolving
technological market nowadays. The domain architecture has to fulfil the de-
rived business strategy requirements.

Domain engineering uses an architecture-centric approach driven by the
business strategy. The technical solution is shaped according to long-term
strategic and business objectives. Interfaces for software variants are tightly
aligned with business variants. It is important to analyse them from both busi-
ness and software perspectives. This keeps the strategy and planned evolution
for the whole product line consistent with one another.

17.3.2 Using the Abstract Factory Pattern

The implementation of the product line depends on the Abstract Factory
design pattern [59]. It can fulfil many common requirements of the plug-in
system and provides fast development of systems in the product line.

Abstract Factory provides an interface for creating families of objects with-
out knowing their concrete classes. Abstract Factory can be applied when a
system has to be independent of how its products are created, composed and
represented. This fits the requirements of the television framework, where
layers, effects and user interfaces should be created independently of their
concrete functionality, which varies from customer to customer. The design
structure of this pattern can be seen in Fig. 17.2.

The participant classes in this pattern and their functionality are as
follows:

• Abstract Product declares the interface for a type of product object. In
this case, layers, effects and user interfaces will be abstract products.

• Abstract Factory declares an interface for the operations that create ab-
stract products.

• Concrete Product implements the abstract product interface to define a
concrete product that is created using a concrete factory. Examples of
concrete products are a bitmap layer and a black and white effect.

• Concrete Factory implements the interface of the abstract factory. Each
customer will require a set of layers, effects and user interfaces, and will
have its own concrete factory implementation.

• Client uses the interfaces of abstract factory and product, but does not
know about concrete implementations. A customer-dependent concrete
factory will be instantiated beforehand.

270 17 Telvent

ConcreteFactory1 ConcreteFactory2

Client

AbstractProductA

AbstractProductB

AbstractFactory

+CreateProductA()
+CreateProductB()

ProductB2 ProductB1

ProductA2 ProductA1

Fig. 17.2. Abstract Factory pattern (UML)

In the television framework, layers, effects and user interfaces are the ab-
stract products to be created. The abstract factory is in charge of creating
their implementations as Concrete Products. Each customer-specific product
has a specific concrete factory (Fig. 17.3).

17.3.3 Introducing the Dynamic Abstract Factory Pattern

The Abstract Factory pattern has two limitations when it is used to implement
variability:

1. Some concrete products are not pre-defined and should integrate into the
application at run-time. Abstract Factory can only create concrete prod-
ucts if they are identified a priori.

2. A customer may solicit more than one instance of an abstract product.
For instance, a customer may need a television capture layer and a bitmap
layer at the same time. Abstract Factory allows only one concrete imple-
mentation per interface.

Considering these limitations some new features were added to the Ab-
stract Factory pattern, thus creating a new pattern coined Dynamic Abstract

17.3 Approach 271

AbstractFactory

+CreateLayer():
+CreateEffect():
+CreateUI():

Customer1Factory

+CreateLayer():
+CreateEffect():
+CreateUI():

CustomerXFactory

+CreateLayer():
+CreateEffect():
+CreateUI():

…

Layer

BitmapLayer TVLayer

…

Effect

B&WEffect SepiaEffect

…

UserInterface

BasicUI …

If new requirements
appear, the architecture
expands here

The abstract factory does not
support creating more than
one kind of layer, effect or UI

Fig. 17.3. Abstract Factory pattern applied to Telvent’s platform (UML)

Factory. The new pattern is considered dynamic because it can change the
relations between concrete factories and concrete products at run-time.

Dynamic Abstract Factory allows a concrete factory to create more than
one instance of a concrete product. To this end, the methods that create
concrete products, e.g. CreateLayer, were extended to receive a parameter
that indicates which layer to create from all the available ones.

Furthermore, concrete factories were adapted to support new concrete
products that were added at run-time. Register and UnRegister operations
were added to Abstract Factory for each abstract product, e.g. RegisterLayer
and UnRegisterLayer. These functions associate an identifier with a concrete
product. This identifier is used when creating new instances of a concrete
product.

For each customer, a set of layers, effects and user interfaces is available,
and many others may be installed and used at run-time. Each customer hasa

272 17 Telvent

AbstractFactory

+CreateLayer(): Layer
+CreateEffect(): Effect
+CreateUI(): UserInterface
+RegisterLayer(in id, in layerClass)
+RegisterEffect(in id, in effectClass)
+RegisterUI(in id, in UIClass)
+UnRegisterLayer(in id)
+UnRegisterEffect(in id)
+UnRegisterUI(in id)

Customer1Factory

+CreateLayer(): Layer
+CreateEffect(): Effect
+CreateUI(): UserInterface

CustomerXFactory

+CreateLayer(): Layer
+CreateEffect(): Effect
+CreateUI(): UserInterface

…

Layer

BitmapLayer TVLayer …

Effect

B&WEffect SepiaEffect …

BasicUI …

UserInterface

Fig. 17.4. Dynamic Abstract Factory pattern applied to Telvent’s platform (UML)

concrete factory that initially registers the available concrete products. A
UML model of the Dynamic Abstract Factory pattern is shown in Fig. 17.4.

17.3.4 Reusing the Dynamic Abstract Factory Pattern

To make the Dynamic Abstract Factory implementation reusable in other
platforms where different abstract products are considered, some more adapta-
tions were necessary. The register and unregister type of methods in Fig. 17.3
are not reusable because they are linked to a concrete context through their
names. Instead of creating new methods for each new problem domain, a
domain-independent method that supports the creation of any concrete prod-
uct is better reusable. Consequently, a generic abstract factory was defined
that creates only one kind of abstract product. The generic dynamic abstract

17.3 Approach 273

BitmapLayer TVLayer … NewLayer

Layer

AbstractProduct

CustomerNLayerFactory

+Initialize()

AbstractClass

+Register(in id, in productClass)
+Unregister(in id)
+Create(): AbstractProduct
+Initialize()

AbstractProduct

Layer

Register(“TV”, TVLayer)
Register(“Bitmap” , BitmapLayer)
…

Layer registered at run time

Fig. 17.5. Dynamic Abstract Factory pattern implementation using parameterised
classes (UML)

factory designed was based on parameterised classes.1 A UML model, rep-
resenting this, is shown in Fig. 17.5. Applying this generic pattern to the
television framework yields three concrete factories for layers, effects and user
interfaces.

For each customer, the Initialise method is adapted and a set of con-
crete factories created. Support for integrating new concrete products comes
from using the register method at run-time. But introducing new products
means introducing new code. The insertion of code in a running process is
not a trivial task. Depending on the language and environment, the dynamic
loading of code can be achieved in different ways. In the television frame-
work, dynamic libraries were used to plug and register new classes into a
concrete factory at run-time. Each library contained one or more concrete
products. When loading a library, the new concrete product is registered at
a concrete factory. When unplugging that library, the concrete product is
unregistered again.

The Dynamic Abstract Factory pattern is not linked to a concrete operat-
ing system or programming language. The solution is specified at design level,
and can be applied using any programming language that allows the dynamic
loading of code, for example Java or C#.

1 A parameterised class is a class where one or more types are defined during
instantiation. In C++, they are also known as templates

274 17 Telvent

17.4 Lessons Learned

Software product line engineering can be applied in domains that are changing
fast. In the case presented here, a television framework was set up as a software
product line from the very start, when only a single customer was identified.
This helped to solve three challenges:

1. The requirements of the initial customer were known to change over time.
2. The product was expected to be interesting to other customers in the

same market as well, but development could not be delayed until those
customers were identified.

3. The product should be applicable in similar, but different domains as well.

Carefully analysing and managing variability helped to develop an archi-
tecture that could deal with future changes in requirements and that was
suitable for a broad range of customers.

In this case, software product line engineering proved to be a good way to
align business goals and system architecture.

This chapter illustrates that product line engineering can be of interest
even in the early development phases, when only a single customer is identified.
A product line was set up to deal with the fact that the customer had unclear
requirements that were expected to change in the future.

Part III

Conclusions

18

Analysis

In this chapter, we summarise the main findings of part II. We start by sum-
marising the general results. Next, we go into detail for each of the Business,
Architecture, Process and Organisation dimensions.

Whenever possible, we present evaluations based on the experience de-
scriptions. Most experiences do not provide enough information to enable a
complete Family Evaluation Framework assessment. However, based on the
descriptions, we may get an idea of the issues that the companies deal with.
This gives a rough indication of the FEF levels of the different companies.
Since not every chapter in part II describes all the BAPO aspects, not all of
them are evaluated for each dimension. The evaluations are not (and cannot
be) formal or complete; we only indicate which evidences lead to our conclu-
sions. Moreover, it should be noted that a higher score is not necessarily a
better score. The optimal score depends very much on the specific situation
that a company is in and the goals that it wants to reach.

We end the chapter with a summary based on the lessons learned in part II.

18.1 Motivation

Several motivations were used to initiate product line engineering within the
organisations. We discuss them separately in the following sections.

18.1.1 Complexity

There are two kinds of complexity that must be dealt with: complexity of the
systems themselves and complexity of the complete portfolio. The complexity
of the systems increases because the stakeholders require more functionality
and quality. The complexity of the portfolio increases because more customer
groups need to be addressed. After successfully implementing functionality in
one system, it is required to be integrated in other systems too. The complexity

278 18 Analysis

is further increased by uncertainty about the exact features that systems need
to have. It is never completely clear what the customer wants next. Decisions
on resolving these issues must be made quickly. AKVAsmart, for example,
mentions the need to introduce late changes and the improvement of product
configuration.

A product line approach addresses the management of both kinds of com-
plexity. Variability management supports the reduction of the complexity in
the portfolio. The complexity of single products is reduced by managed reuse,
which increases the similarity between different systems. Success in reducing
the complexity of systems is mentioned in several experiences. In at least one
case – AKVAsmart – the code size for the portfolio was reduced because a lot
of duplicated code was removed. This was an additional factor in the reduction
of the complexity of the portfolio.

Nokia Mobile Phones concentrated on the improvement of design docu-
mentation to deal with complexity. Improving documentation is only valuable
if its results last long enough. In general, this does not hold for single product
documentation, but it does so for a product line. Nokia Networks explains
the importance of a design data warehouse, where every development group
may get the development data it needs in an effective way. Several experiences
mention that dealing with requirements in an effective and efficient way is an
open issue that needs to be dealt with. The set of requirements itself is already
complex, and good solutions are still lacking.

18.1.2 Variability and Commonality

Variability management is the main reason for introducing product line en-
gineering in several cases. These companies have to produce diverse systems
that address many customer groups. Even though single systems do not need
to be complex, the variability within the portfolio must be managed.

Several experiences mention an increase in the number of different sys-
tems that are actually produced by the product line, showing that they have
successfully mastered variability management. market maker’s product line
enabled a very fast increase in the number of systems produced. For Philips
Consumer Electronics, variability was not an issue any more once its product
line was deployed.

Several experiences, among them Philips Medical Systems, deal with the
need to improve the commonality among products. This is done not only from
a complexity management point of view, but also as a marketing issue. The
customer wants the same look-and-feel in all products to make it easier to
move from one product – or product generation – to another. In addition,
Philips Medical Systems mentions the need to increase the synergy among
newly acquired and existing development groups. The experiences of AKVAs-
mart show that commonality and ease of integration were indeed obtained.

18.1 Motivation 279

18.1.3 Efficiency and Costs

Efficiency improvement and cost reduction are a motivation for most com-
panies. This leads to a shorter time to market, faster innovation, increased
productivity and the reduction of life-cycle costs. Significant efficiency im-
provements and cost reduction are obtained in several experiences. Bosch men-
tions the success of its product line in a competitive market. Siemens reduced
its testing costs. Sometimes, the development product line directly supports
a marketed product line, e.g. Philips Medical Systems’ Vequion. AKVAsmart
increased its efficiency, enabling the fast adaptation of products to different
situations, although the impact is not as large as they had expected. Market
maker achieved a large reduction of maintenance effort. Setting up the product
line reduced the overall efficiency, but after the development of three or more
products the efficiency increase was clear. Several experiences mention the use
of well-aligned roadmaps for planning domain and application development.
DNV reports the reduction of administrative tasks and speed improvements
for technical tasks. Some experience results mention improvements of time to
market by factors of two or more.

18.1.4 Reuse and Architecture

Often, companies experience a need to improve the architecture to support
reuse for both present and future products. One choice is to start a product
line architecture. A usual approach is to develop the reference architecture
concurrently with the production of the first systems in the product line.
Starting from scratch is often too costly, so there is a need to incorporate
legacy systems within the product line: already existing products are used as a
source of reuse. An exception is the DNV case, where the Nauticus architecture
was developed practically from scratch.

Most architectures are based on a platform, supporting the requirements of
present and future products. Often there are several similar products that are
combined in the product line to improve the benefit of reuse. The development
of a common, variable platform is often considered as the basis for introducing
the product line in the organisation. Plug-in mechanisms and the definition
of the right interfaces seem to be crucial.

18.1.5 Quality

Quality improvement is another reason for starting a product line. It involves
better processes and a higher level of trust in a platform once it is used in
many products. Both Siemens and Bosch report an improvement of quality.
Philips Medical Systems illustrates the improvement of the quality by the fast
reduction of the defect density rate.

280 18 Analysis

18.2 Business

In almost all cases, management supported the product line development.
Successful pilot projects win the attention of higher management and help to
introduce product line engineering further in the organisation.

In order to enable the transition to a product line, several experiences
mention the necessity to have strong management support to make the move
towards product lines. This is made particularly explicit by the Siemens case
study that mentions that it was impossible to start a full-fledged product
line because of a lack of management support. In many cases where manage-
ment support is available, the product line is introduced in an evolutionary
way, involving a business strategy, introduction of a reference architecture and
adaptations to the organisation. Philips Medical Systems mentions the con-
ception, birth and growth phases and stresses the importance of management
commitment to deal with the tension that builds up before break-even has
been reached.

Product management uses knowledge of the product line when planning
and making roadmaps. This involves planning for the platform and for the
products. The time to market often decreased, sometimes with a factor of
two or more. Certain companies, e.g. market maker, found that a thorough
understanding of the product line was crucial for the marketing department
to win commission for products that were originally not envisioned to be part
of the portfolio.

Business variants are aligned to product variants to increase the business
value of the product line. Philips Medical Systems introduced the Vequion
brand to market the products built within its product line. In certain cases,
e.g. Bosch, it was decided by product management that it is better to have
not a single product line development for all products, but separate ones for
different market segments.

Most experiences do not mention how software product line engineering
influences the budget and investment decisions. market maker merely men-
tions that the investment pays off. Philips Medical Systems has a model to
compare platform development costs with product development costs. This
is used to let the product groups pay for the platform in a way that holds
financial benefits for all.

Many experiences include the product line in the companies’ long-term
visions. Telvent mentions that the long-term vision of the product line also
provides solutions for future products.

In certain cases, business aspects were the motivation to initiate the prod-
uct line development. Often, this is related to the need for more software
for more variants. market maker mentions changes in the market – i.e. the
internet hype – as a motivation. Philips Consumer Electronics expected a
need for cheap, hybrid products that could not be supported by their existing
architecture and way of working.

18.3 Architecture 281

18.2.1 FEF Evaluations

No experiences mention measuring the business aspects of software product
line engineering. This indicates that none of them is at level 4, measured or
higher.

Some case studies suggest that the companies are near business dimension
level 3, managed. DNV has a long-term vision and strategy. Its management
supports the long-term vision of the business use of the platform. market
maker has strong management involvement, and includes the product line in
its long-term vision. It uses a strategy of small investments. Philips Medical
Systems has clear management awareness, and the product line is an impor-
tant ingredient in its strategy. Similarly, this applies to the Philips Consumer
Electronics case, where business goals are leading in the product line devel-
opment.

Two companies seem to be near level 2, aware. The management of AK-
VAsmart supports product line development and uses it in the planning of
new products. It is, however, not clear whether it is used strategically. Tel-
vent is also at this level since it does not indicate that the product line is used
strategically either.

Siemens does have management awareness, but because product line en-
gineering is only partially introduced, it cannot be evaluated higher than
level 1, project-based.

There is insufficient information in the Nokia cases to do a reasonable
assessment for the business dimension.

18.3 Architecture

In most cases, the product line uses a component-oriented architecture. Con-
figuration mechanisms range from plug-in mechanisms (e.g. AKVAsmart) to
proprietary tool support (Philips Consumer Electronics). These mechanisms
help to support asset reuse within the products. Reusable components are
integrated into the framework, or designed as default plug-ins. The applica-
tion developers select available reusable components for configuring, and add
product-specific components.

In general, the reference architecture provides a basis for standardisation
within the company. Standardisation is used to increase the reuse level of
the domain assets. Application architects have more or less freedom to add
to and adapt the reference architecture. The DNV case mentions a model-
driven approach that leaves little freedom for the application architecture.
Philips Consumer Electronics provides a single architecture that is supported
by tools that enforce architectural rules. Siemens chooses explicitly not to
have a reference architecture because of the limited amount of applications
involved. In the Nokia Mobile Phones case, only the reuse of solutions for
quality requirements is mentioned.

282 18 Analysis

Variability management is reported mainly in the support of configuring
components. market maker mentions third-party tool support for this, and
Philips Consumer Electronics uses its proprietary Koala tools. Telvent created
the Dynamic Abstract Factory pattern to this end. DNV has an explicitly
defined list of mechanisms for variability management.

In most cases, the architecture was developed in an evolutionary way,
concentrating on small parts of the system first, typically the lower layers.
Later, the architecture was extended to include higher layers. In many cases
(e.g. AKVAsmart), the reference architecture was initially applied in a few
products only and extended to more products in a stepwise fashion. The scope
of the architecture at each step was usually restricted to the requirements of
the relevant applications. Telvent took an opposite approach: it intentionally
started with a platform that was much richer than what was required by their
initial – and, at the time, their only – customer. Having a platform with the
right variability helped them to win other customers with similar requirements
later.

The Philips Medical Systems case discusses the planned integration of
existing assets in the growing architecture. DNV did not integrate legacy
assets in the architecture. market maker used wrapped legacy components to
give its product line development a boost initially, replacing them later with
fresh code. Certain cases, e.g. Bosch, mention the development of a completely
new architecture for their product lines.

18.3.1 FEF Evaluations

Because of its extensive tool support, Philips Consumer Electronics may be
at level 5, configuring.

Two companies that can be evaluated to be near level 4, variant products,
are DNV and market maker. DNV provides a far-reaching architecture involv-
ing variant products. It uses an explicitly defined set of variation mechanisms
to build products. market maker seems to be at this level too. The reference
architecture is used strictly, and variation is clearly managed.

Several companies seem to be near level 3, software platform. AKVAsmart
has a layered plug-in architecture. Applications are configured through the
addition of independent plug-ins. A large part of the software is application-
specific. Philips Medical Systems’ software platform is used by many differ-
ent application architectures. The Telvent case reports on a single variability
aspect of the architecture. It suggests a defined architecture where the appli-
cations obey the architecture rules.

Because of the limited information, certain companies cannot be evaluated
above level 2, standardised infrastructure. The Nokia Mobile Phones case only
covers a part of the architecture dimension: the quality of the requirements
documentation and of the architecture itself. This does involve variability
management at this level, but the information is too restricted to do a good
evaluation. Siemens decided not to have a reference architecture.

18.4 Process 283

The Nokia Networks case lacks information to assign a level in the archi-
tecture dimension.

18.4 Process

In most cases, there are separate domain and application engineering life-
cycles. These life-cycles are usually performed at CMMI level 3 or 2. Usually,
domain engineering is at a higher level than application engineering. In the
Bosch case, process improvement went hand in hand with the introduction
of product line engineering. Being a small company, market maker chose not
to make an explicit distinction between domain and application engineering
in the beginning. Once more developers are working on the product line, a
separation into two teams will be made. The Nokia Networks case mentions
its experiences with asset management at the domain level, which remains an
unsolved problem. The Siemens case discusses the testing process. A central
part of its organisation performs the domain testing activities.

The separation between domain and application engineering is usually es-
tablished by having separate units for each of them. Some companies mention
changes in the roles that requirements, testing and asset management play
in the development process. These activities have consequences over whole
product line development. With respect to single system engineering, these
tasks have to be better organised.

Several experiences mention the availability of specific groups that collab-
orate over department borders, involving both domain and application en-
gineering. For example, Philips Medical Systems has a shared configuration
management system.

18.4.1 Evaluations

A few cases mention the reached CMMI level of the involved departments, but
this result does not include the amplifications for product line engineering.

Several descriptions suggest that the companies act near level 3, defined.
Nokia Networks has well-defined processes, including domain and application
engineering roles. As a hierarchy of product lines is active, application en-
gineering at one level is actually domain engineering for the next level up.
The asset management and architecture evaluations activities are the pri-
mary focus of this case study. Both Philips cases have clear domain and
application engineering processes, and collaboration is well-defined. Although
market maker did not separate between domain and application engineering
teams initially, the domain and application engineering activities were sepa-
rated very early on and the company had defined tasks for them. Later also
the separation of teams was introduced.

Nokia Mobile Phones describes activities and relationships for domain and
application architectures. If other activities are performed in similar ways and

284 18 Analysis

the right CMMI level is reached, it may be assumed that Nokia Mobile Phones
is at level 3 too.

Most other companies are at level 2, managed. DNV has separate domain
and application engineering processes. Siemens has a well-defined test pro-
cess involving both domain and application tests. The description suggests
that other activities of domain engineering are also defined. In addition, the
matrix organisation suggests collaborations between domain and application
engineering. Telvent mentions the separation of domain and application engi-
neering and co-ordination. It is not clear to which extent it is used.

AKVAsmart does not mention its processes and cannot be evaluated for
this dimension.

18.5 Organisation

In many experiences, roles and responsibilities were defined and assigned for
doing different product line engineering tasks. At least, domain and applica-
tion engineering roles were distinguished for traditional engineering tasks. The
Philips and Bosch cases mention the availability of asset-related responsibil-
ities, for collaboration between domain and application engineering. market
maker gives a list of nine differently defined roles.

In most cases, the product line roles and responsibilities are distributed
over domain and application engineering units within the organisation. Within
market maker this was restricted to the distribution over teams working in
the same unit. Philips Medical Systems and Nokia Networks mention a hier-
archical organisation with product lines at different levels, where application
engineering for one level can be seen as domain engineering for the next level.
Philips Consumer Electronics mentions an organisation with many product
teams and (domain) asset teams. Siemens has a matrix organisation, where
several domain-related roles are placed in the functional dimension.

Several experiences mention collaboration between cross-departmental
groups. Examples are asset-related teams and change-control boards, for ex-
ample at Bosch. Philips Medical Systems reports the Inner Source way of
collaborating. This is the use of open-source development practices for dis-
tributed collaboration within a company.

18.5.1 FEF Evaluations

market maker can be assigned near level 5, domain-oriented. There is no
separation between domain and application engineering teams, and domain
engineering seems to be leading in the organisation structure. In fact, many
domain engineering roles are used. In addition, there is an effective commu-
nication available for product line issues.

18.6 Summary 285

Philips Consumer Electronics seems to be near level 4, synchronised, since
it has an integrated organisation with a lot of collaboration between product
and asset teams.

Several other organisations act at level 3, weakly defined. Nokia Networks
has a hierarchy of product lines both internal and external to the company.
There seems to be awareness of the product line in the organisation, and there
is a clear separation of domain and application engineering. Philips Medical
Systems also has a clear separation between domain and application activities,
involving cross-departmental teams.

Three cases suggest a level 2, reuse. DNV has a separate domain engi-
neering organisation called Nauticus. The remainder of the organisation is
not changed, but makes use of the platform provided to them. Siemens ap-
plies a matrix organisation of functions and projects. Domain engineering is
one of the projects. Finally, Telvent has separated domain and application
organisations but no cross-functional teams are mentioned.

There is not enough data for Nokia mobile phones and AKVAsmart to do
an evaluation.

18.6 Summary

18.6.1 How to Do It

Several case studies mention the importance of management involvement and
a long-term vision in the introduction of product line engineering. Some cases
make clear that all four BAPO dimensions must be addressed.

An evolutionary approach to platform development seems to be crucial
for success. Initially, the platform is designed for a small set of products with
limited functionality. Then it grows to support more products and functions.
The introduction of the platform in new products should also be planned in
an evolutionary way. An exception is Telvent: that company started building
a platform that exceeded the demands of its first customer. The success came
because the company had a pretty good idea of the required variability in
advance.

The Bosch experience shows that process improvement can go together
well with the introduction of product line engineering.

The market maker case mentions the importance to organise the work
around the development of components and not based on user features. It
also stresses that one should be careful not to design the first product too
much according to the requirements of the first customer.

The Philips Medical Systems case shows the importance of setting up cross-
departmental teams very early in the introduction process to get commitment
on shared assets. Together with a strict change control process, this keeps the
platform and architecture fit for all stakeholders.

286 18 Analysis

Siemens shows that a partial implementation of software product line en-
gineering can be worthwhile too. They succeeded in reducing their test effort
by structurally reusing their test-related assets.

18.6.2 Guidelines

All BAPO dimensions, Business, Architecture, Organisation and Process,
should be addressed to enable a sustainable software product line activity.
This can be achieved only through strong management support. As a con-
sequence, the organisation should be at level 2 or higher in the business di-
mension. In addition, evaluation and planning are important ingredients for
managing product line development. The Families Evaluation Framework can
be used to gain insight in the present status of a company or unit. Product line
engineering adoption becomes much more systematic if an appropriate evalu-
ation of the current situation and the particular benefits that are planned to
achieve are made.

Align product line variants with business needs. This improves the possi-
bilities to perform internal planning, as well as the knowledge of the product
line by the marketing department and customers. Branding a marketed prod-
uct line may also improve this awareness.

Several experiences emphasise the importance of a single, well-designed
architecture for the complete product line. This reference architecture must
be stable for a long time. It is the technical basis to develop the product line
and is a powerful internal communication tool. It provides technical standards
within the organisation. The technical staff understands the architecture and
what it means for variability and reuse. The architecture is usually built based
on experiences in previous products. It may involve legacy assets that have
proven themselves, often extracted from existing systems.

On the other hand, process competence does not seem to be as impor-
tant as it is sometimes considered. Most companies perform at CMMI level 2
or 3. This means that basic process intelligence is available in the company.
An important point is the clear separation between domain and application
processes. In addition, it is necessary to have activities to sustain the collab-
oration and feedback between domain and application engineering.

With respect to the organisation, we see the importance of roles for domain
and application engineering. Additional roles can be necessary for supporting
collaboration, especially in large, distributed organisations. Virtual organisa-
tion structure leads to collaborative groups over organisation borders. This
is important to keep the same vision throughout the organisation. It is not
always necessary to have a complete distribution of the separate roles in the
organisation structure. Especially for smaller companies, a single person may
take several roles. As a consequence, part of the organisation structure is only
virtual.

18.6 Summary 287

18.6.3 Benefits

When done well, software product line engineering pays off. Shorter lead-
times, lower costs, reduction of maintenance and increased flexibility are some
of the reported business benefits. Several companies found that the staff in-
volved in their product lines was more stable than in other parts of the organ-
isation. This may be a sign of a high level of job satisfaction for the people
involved.

The experiences mention the increase of efficiency obtained through the
introduction of the product lines. In particular, the development time for the
products is reduced to different degrees.

AKVAsmart achieved a large reduction in code size, due to the removal of
duplicated code, which helps to reduce maintenance costs.

18.6.4 Concerns

The lack of good tool support is a general concern. It hinders the introduc-
tion of product line development. Another issue is that the introduction of a
product line affects many parts of the organisation and may lead to reduced
attention for equally important concerns of the organisation. Reuse remains
difficult.

A balance must be found between developing for and with reuse. It usually
takes a long time to create a reusable platform with enough functionality.
Several experiences mention wrapping legacy components of existing systems
as a way to speed up platform development.

market maker mentions problems in separating application and domain
engineering work. As application engineering is more short-term focused it
tends to pull harder at the necessary resources, leaving the domain engineer-
ing activities empty handed. Other companies show that a clear separation
between domain and application organisation reduces this problem. A sec-
ondary structure dealing with functional issues is necessary to have the right
level of collaboration with the product line organisation. This may not be
applicable to small companies, such as market maker.

Several experiences stress the fact that requirements and testing in a prod-
uct line development is still an issue that needs more improvement. Nokia Net-
works mention the fact that, in their complex situation, asset management
needs a lot of improvement. Especially when the organisation is structured
around products, a lot of assets become ownerless sooner or later.

Negative points, or at least disappointments, of product line development
are also mentioned. AKVAsmart found that the reduction of the development
time was not as substantial as was anticipated. Several other experiences show
that the introduction of a product line takes a lot of time and effort. The
patience required before the benefits can be reaped may lead to tension within
the organisation. At such points, management support is indispensiable.

288 18 Analysis

18.6.5 Evaluations

No formal evaluation can be made for any dimension or any company. The
nature of the experience descriptions does not allow that.

In the Business dimension, the highest level that was reached is level 3,
managed. This level applies to most cases. If a product line is considered,
it will influence the business strategy eventually. In the architecture dimen-
sion, we find evaluation results that cover all levels except 1. One company
has reached level 5, two reached level 4. The high level for the architecture
suggests that architecture is the first subject that is considered in doing prod-
uct line engineering. In the process dimension, the highest level reached is
level 3. Most companies obtain this level. This is in line with the fact that
most companies do not act at higher CMMI levels as well. At least there is a
clear separation between domain and application activities, and also the im-
portance of collaboration is reflected in this level. Finally, for the organisation
dimension, there are companies acting at all levels, except level 1. Levels 4
and 5 are only assigned to a single company. Most companies act at level 3.

By summarising the levels in all dimensions, we see that most evaluations
for any dimension are at level 3. This suggests that at this level the most
important ingredients for doing product line engineering are available. Many
case studies mention problems. Solving those may lead to shifts in their FEF
scores.

19

Starting with Software Product
Line Engineering

An important question that will come up when one is interested in introducing
product lines (or any major change) in an organisation is, what now? How
does one start to do software product line engineering?

Unfortunately, there is no simple answer to this question, because there is
no right or wrong way of doing product line engineering. It depends completely
on the given situation. The question cannot be answered without asking nu-
merous counter-questions: How large is the company? What is its current way
of working? What goals does it want to reach? Why is it interested in product
line engineering in the first place? What are its markets? etc.

Instead of giving a single answer, we will show what should be done, and
how others have done it before. We have identified the ten steps1 that are
needed to successfully introduce product line engineering in an organisation.
The steps are distributed over three phases:

• Decide
1. Define a business strategy and vision.
2. Learn about software product line engineering.
3. Perform a risk analysis in the context of the organisation.

• Prepare
4. Gain support for the new way of working.
5. Set concrete goals for the transition.
6. Scope the product line to determine its boundaries and contents.
7. Evaluate the organisation for its current status and the ability to adopt

the desired way of working.
8. Plan the transition from the current development process to product

line engineering.
• Transition

9. Roll out and institutionalise the new way of working.

1 We present them here as separate consecutive steps for readability. In practice,
some of the steps will overlap, be taken in parallel, or their order changed. It is,
however, important to address all of them in one way or another

290 19 Starting with Software Product Line Engineering

10. Evolve the product line to continuously meet the goals of the organi-
sation.2

We devote a separate section to each phase, with sub-sections per step. We
explain what the steps mean and give examples of how the companies in our
case studies have dealt with them. Armed with this knowledge, organisations
can confidently start with software product line engineering.

19.1 Decide

The goal of this phase is to decide whether product line engineering is a suit-
able means to meet an organisation’s goals. To make a well-informed decision,
the goals and the potential solution must be well understood.

19.1.1 Define Business Strategy and Vision

Starting with software product line engineering is not something that an or-
ganisation does easily. It is not easy, and it certainly is not without risks.
It means changing, sometimes radically, the way that software is developed,
products are created and in some cases even how the company performs its
business. Therefore, a deep understanding of the needs of the business is re-
quired before the decision on necessary changes can be made.

Software product line engineering is a long-term investment. It requires
up-front investments in terms of effort, time and money. If the introduction
is successful, the rewards are large and long lasting, but they will not come
overnight. Therefore, it is important to have a good insight into the company’s
strategy. What can be expected for its future? How is the world changing?
Are there customer needs that cannot be addressed in the future? What new
systems will be developed and produced? Will new markets be addressed?
Are there opportunities to enter adjacent markets by adapting products? It
can be worthwhile to capture this information in a vision statement. Such a
statement captures an (ambitious) goal in business terms. It sets a finish line
towards which people work. DNV, for example, defined a long-term vision to
express the company’s ambitions to enter the market of vessel information
services:

To establish a common information repository containing or referring
all information accumulated for an object, e.g. a vessel, throughout
its life-cycle. This should enable the transfer of information on the
object between all involved actors, including feedback of experiences
accumulated during the object’s life-cycle, for efficient delivery of high
quality services and for continuous learning and improvement.

2 Although evolving a product line extends from the starting phase to maturity, we
address it here because evolution is something that starts as soon as a product
line is started

19.1 Decide 291

Notice how DNV’s vision does not mention product lines at all. This vision
deals with what the company wants to achieve, not how it plans to achieve
it. It describes a long-term goal in terms of products and services that DNV
wants to bring to the market.

Often, current problems give rise to the introduction of product lines. At
Bosch, for example, the platform could not handle the growing heap of func-
tional requirements and preserve essential quality attributes like low resource
consumption and keeping calibration procedures simple. The large range of
variants (hundreds of programs versions per year) and the demand to share
source code with customers indicated the need for a new way of working.

For Philips Consumer Electronics, it was a combination of problem, op-
portunity and future expectations that made the case for product lines. The
company was faced with embedded software that grew exponentially in size
and complexity. On the other hand, commonality in products had reached a
level where televisions from different regions had less differences than that they
had things in common. For the future, a new type of products was foreseen,
namely hybrid systems such as television and video recorder combinations.
These could not be dealt with efficiently with the current way of developing
software.

19.1.2 Learn About Software Product Line Engineering

Software product line engineering is a powerful concept, but it is not a
panacea. To make a founded decision, it is important to understand the pros
and cons for the situation at hand.

Many of the companies described in this book have pioneered the concepts
of software product line engineering. They had little or no information to guide
them as they developed their processes and shaped their organisations. Still,
in most cases knowledge was acquired beforehand. Some of the larger compa-
nies used their research and development capacities. Bosch set up small pilot
projects within the research department to test their approach. Philips Con-
sumer Electronics asked Philips Research for help on solving their problems.
In some cases, external parties were contacted to help the companies find their
way. Siemens used the testing expertise of the University of Duisberg-Essen to
streamline their processes. Research institute Fraunhofer IESE helped market
maker establish a product line using its PuLSE approach. Philips Medical Sys-
tems invited reuse expert Martin Griss to convince management and senior
technical staff of the virtues of structured reuse.

19.1.3 Perform a Risk Analysis

Product line engineering can be a major leap forward for any software devel-
opment organisation. However, it will almost certainly have a major impact
on how the organisation is doing business. This leads to risks that any man-
ager who is acting responsibly should assess prior to embarking on such a

292 19 Starting with Software Product Line Engineering

route. Just like in other projects, risk management should be an integral in
transitioning to product line development [109].

The risks that are connected to product line engineering are manifold. The
following list should only be seen as a short overview:

• The number of products that are developed as part of the product line
may not be as high as initially expected.

• The developed assets (e.g. the components developed for reuse) may not
be accepted by all developers, leading to wasted effort.

• It may be crucial to retain control and flexibility in every detail of the
development to serve the customers appropriately.3

• The domain / product line thinking that is necessary may not be accepted
in the development team.

• Existing systems that need to be maintained may hinder a transition to a
different development approach.

• The overall business strategy may focus too strongly on “made to order”,
making it unrealistic to reuse a significant number of components.

• A customer may already exist for the products and may too strongly in-
fluence the direction of the product line.

Risk analysis should be a major aspect in software engineering manage-
ment [87]; however, often it is not done or only to a limited extent. Also in
transitioning to a product line approach, it is of immediate importance to
perform risk management; however, if we analyse the various case studies in
the Part II, we often see that risk management has often been done only
superficially. Some positive examples of risk awareness are as follows:

• At DNV, a clear understanding existed that the differences in the cul-
ture of the various development centres may hinder any transitioning to a
coordinated product line engineering approach. Thus, developing such an
alignment, both on a technical and on a personal level was identified as a
major issue.

• At Siemens, the risk analysis of management led to the decision to only
perform a restricted form of product line engineering. The schedule was
tight, management was unsure about success and a formal approach was
seen as leading to too much organisational change. Thus, only testing was
based on a product line approach.

• At Telvent, we actually see a case where the application of product line
engineering was driven from the awareness of risks. Here, the risk was seen
that strong volatility with customer requirements existed. Thus, product
line engineering was seen as an approach to gain the necessary flexibility
to adapt to these changing needs.

Despite these positive examples, especially risk analysis is a weak point in
most attempts to transition to a product line approach. There are of course
3 While in nine out of ten cases where this is claimed, it is actually not the case,

there are still certain development contexts, where this is a serious issue

19.1 Decide 293

generic approaches to risk management that can be used like the RiskIT
approach [81]. For our situation, there are certain approaches that specifi-
cally address the problem of benefit and risk analysis in a product line situa-
tion [120, 12, 58]. One of these approaches, which also addresses Scoping (cf.
Sect. 19.2.1), is part of the PuLSE-Eco approach and shall be discussed here
as a prototypical example. This approach works by analysing certain standard
dimensions that should be assessed in order to determine (and compare) the
costs, risks and benefits of a product line introduction situation [120]. The
following dimensions cluster issues relevant to a product line benefit and risk
analysis:

• Maturity – sufficient maturity of the domain in which the product line is
situated is a pre-condition for stable concepts that are worth a significant
investment. If the understanding of the domain has not yet sufficiently
matured, it will not be possible to encode this basic knowledge into a
product line infrastructure. On the other hand, the Telvent case study
shows that product line development may also be introduced in relatively
immature domains.

• Stability – even if the domain is mostly mature, this does per se not say
much about the overall stability. However, a product line investment needs
to take into account the impact of potentially rapid change. Once installed,
the product line may be able to help the company act upon such changes
as, for example, the market maker case shows.

• Resource constraints – as product line engineering will usually require a
substantial investment, the impact of this has to be taken into account.
But resources are not only money and time, they also cover the availability
of experts. The Siemens example shows how a resource shortage led to
initially cutting down on the extent of the product line initiative.

• Organisational constraints – this addresses any organisational restrictions
as they become apparent in the example of DNV above.

• Market potential (external and internal) – this addresses any concerns re-
garding the market potential of the products. It is subdivided into an
analysis of the external market (whether there are enough customers for
the final products) and an analysis of the internal markets (whether the
developed reusable components are actually used by the product organi-
sations).

• Commonality and variability – this is of course the very basic question
about product line engineering: Will we have sufficient commonality among
the products, so that we will have enough reuse potential? In addition, is
there sufficiently systematic variability, so that we can exploit it in terms
of a product line approach?

• Coupling and cohesion – Can we identify features/ functionalities / compo-
nents so that we can encapsulate reusable assets? The higher the coupling
is, the more difficult (and costly) will it become to develop reusable assets.

294 19 Starting with Software Product Line Engineering

• Existing assets – they can be both an advantage and a disadvantage. They
can be an advantage as they may reduce the amount of effort required for
developing reusable assets; they may be a disadvantage insofar as they
may require the support of legacy systems and components.

Answering all these questions can be done in a manner very similar to
other forms of assessments. The result is a benefit/ risk profile of the current
situation. This may also be done on a fine-grained level, leading directly to a
scope of the development as we will discuss below. However, the details of how
risk analysis is performed are not so much in question. The issue is mostly
that it is done at all.

19.2 Prepare

The preparation phase is all about preparing the organisation for the intro-
duction of software product line engineering. This approach touches many
facets of an organisation, and its introduction must be carefully prepared.

19.2.1 Gain Support

Right after the decision has been made to introduce software product line
engineering to the organisation, the search for support begins and it never
stops completely.4 This ongoing activity needs to reach all the stakeholders of
the change, most notably in (software) development, marketing and manage-
ment. Companies that have successfully adopted software product lines have
all taken this step seriously.

Bosch took a number of measures to make sure that the organisation would
understand and, eventually, embrace the new way of working. Workshops were
held with middle management to inform them of the process, learn from the
feedback, and gain their trust and commitment. Enthusiastic and perseverant
management were sought out to promote the new way of working. In order to
communicate the idea behind the change, they used a vision statement.

Software is built from a common architecture and a set of compo-
nents using a product line approach, so that high quality individually
tailored products can be built easily and predictably, using as few
hardware resources as possible, thereby reducing overall development
costs.5

4 Actually, this step is part of the decision-making process. Although a select group
may have taken the decision to go a certain way, a much larger group of people
must make their own decision to give full support to the new way of working

5 In contrast to the business vision, which focused on what a company wants to
achieve, this vision focuses on how the company wants to achieve its goals, namely
by introducing software product line engineering. This is a different perspective,
for a different goal

19.2 Prepare 295

DNV illustrated its vision for its second generation product line with a
series of mock-ups. These illustrations of what types of products the new
product line would establish were used to convince people in the development
team, the customer organisations and top-level management.

Philips Medical Systems created a community of architects from all over
the company to discuss their software, the common platform, ideas, problems,
roadmaps and more. This community was kept alive and used to obtain agree-
ments over the product line’s technical course throughout its existence. In the
beginning, e-mail was the primary communication tool for this community.
Over time, more and more tools were put to use including an intranet website,
teleconferencing facilities and regular face-to-face meetings.

Product groups have to be nurtured until long after they have decided to
use common assets. Since this use requires an initial investment, the resistance
in the group is growing up until the point that the payback becomes visible,
after which it drops very fast. Those early periods of tension require the
constant attention of the platform group’s management. The most effective
way of dealing with it is to help the adopting product groups to reach their
break-even point sooner, for example by focusing platform development efforts
on assets that are especially important to them.

The continuous nature of gaining support is also illustrated by the experi-
ences of Philips Consumer Electronics. Having champions in the organisation
that continuously promoted the way of working was an important success
factor. Interestingly, with the approach being successful for a long period of
time, it had started to be taken for granted. Newcomers, who did not per-
sonally experience the problems that the product line has solved, started to
question the value of product line engineering in the organisation. Support is
something that must be won continuously.

19.2.2 Set Concrete Goals

At this point, the organisation has a reasonable understanding of software
product line engineering, the benefits and risks involved, and there is a busi-
ness strategy that drives the effort. Now is a good time to set concrete and
measurable goals for the change. These goals can then be used to guide the or-
ganisation through the transition phase and beyond. If chosen carefully, they
help to avoid pitfalls like over-engineering or getting products out of the door
without institutionalising the new process. Goals can also serve as finish lines
that tell the organisation when it is done, or rather when the time has come
to set new goals.

The following goals were mentioned most often in the case studies:

• Reduce time to market : both for new products and variants of existing
ones.

• Reduce costs : the size and complexity of software is growing for many
products, making the reduction of development and maintenance costs

296 19 Starting with Software Product Line Engineering

an important goal for many companies. Siemens, for example, specifically
aimed to reduce the costs of testing for their product line of highly reliable
medical systems.

• Raise the product quality level : for individual products, or the portfolio as
a whole. At Bosch, the software had grown to support a lot of functionality,
but at the cost of some crucial quality attributes, like ease of use. Product
line engineering was a way out of that situation.

• Become more efficient : to cut costs or reduce the time to market. DNV
mentioned information sharing across disciplines as a driver for product
line engineering. This increases the quality of their processes and therefore
the efficiency and product quality.

• Integrate the product portfolio: establishing a common look-and-feel, and
integrating products in other ways is often a goal for software product line
engineering. For instance, AKVAsmart aimed for a common look-and-feel
for different applications. Philips Medical Systems used its product line to
integrate products of companies that it acquired.

• Extend the product portfolio: Telvent had a single customer for a single
product, but it foresaw an opportunity to sell variants of it later and there-
fore chose product line engineering as their development process. Philips
Consumer Electronics designed its product line to support the develop-
ment of hybrid products that it foresaw would become important.

Most companies have several goals that they aim for. Bosch, for exam-
ple, wanted to deal with the increasing complexity of their software while
simultaneously lowering costs, shortening time to market, and increasing the
product quality, along with more exotic goals like sharing source code with
their customers.

One particular goal that can be helpful to define is the desired FEF-profile.
In the previous step, the organisation evaluated its current position. Now, the
desired situation can be described. The FEF-profile shows the organisation’s
ambition with respect to how it will use software product line engineering
to achieve its goals. As explained in Chap. 6, the desired profile can help to
identify where improvement is needed and thus effort should be focused on.

19.2.3 Scope the Product Line

Scoping the product line is a key step, which makes product line engineering
a truly strategic approach. Determining the scope has many implications. In
general three levels of scoping can be distinguished [119]:

1. Product portfolio scoping: this aims at identifying the products that shall
be part of the product line.

2. Domain scoping: this aims at identifying major areas of functionalities
that shall be supported by product line reuse.

3. Asset scoping: this aims at identifying the particular implementation com-
ponents that shall be developed as product line assets.

19.2 Prepare 297

The last two are in general closely related. Thus, we can regard the scoping
problem as basically two-dimensional: which products shall be considered part
of the product line and what functionality within these products shall be
supported by reusable assets?

These two questions can not be answered clearly without relating to the
previous steps. In particular, the strategy and vision will strongly impact the
specific products that shall be developed. However, that a certain product
shall be part of the overall strategy does not mean it also shall be part of the
(technical) product line. Sometimes it is more meaningful to acquire certain
products externally or develop it independently (e.g. if the products rely on a
completely different platform like a mobile platform, or the product has only
superficial resemblance).

Sometimes the specific products that shall be the basis for the product line
are rather clear from the beginning. For example, in Chap. 16 on Siemens,
it is mentioned that “while planning to improve two existing (rather simi-
lar) applications and add a third, the decision was made to develop all three
applications with the same assets”; thus, the very decision that led to consid-
ering a product line approach also defined the specific products that should be
taken into account. In contrast, Bosch and DNV define the scope very openly
and broadly to rather general markets. The ambition there was to support all
products relevant to the market. In particular, at DNV the concept was to cre-
ate a plug-in architecture that supports the basic and common requirements,
while extension of the product line can be done by the plug-in architecture.
Based on the scoping results, Bosch decided to develop several product lines
in parallel.

An intermediate strategy is demonstrated by the market maker case study.
Here, a number of product types were defined; however, not all of them ulti-
mately lead to instantiated products. Nevertheless, the effort of product def-
inition was not considered wasted, but rather was regarded as a very helpful
exercise that clarified much about the future products.

Scoping is directly based on the input from risk management. First of all,
the risk management information is used to determine whether it is meaning-
ful to define a scope at all. However, in a second step domain scoping is usually
performed, i.e. individual functional areas are defined that are evaluated with
respect to their reuse potential. Here, again risk analysis can be used as the
benefit/risk situation of the various areas (sub-domains) may vary strongly.
Some refined approaches make this decomposition of the overall product line
functionality into sub-domains explicit and support the accompanying analy-
sis [120].

The resulting analysis determines the product line potential in terms of
the partial potentials of the various domains. This allows deriving a ranking of
domains in terms of return-on-investment on reuse investments. Such a return-
on-investment analysis can be performed in an even more fine-grained manner
by making the utility of reuse relative to the various business goals explicit.
(See Sect. 2 business goals for a list of goals). Some approaches support this

298 19 Starting with Software Product Line Engineering

kind of analysis [122]; however, in practice it is often not possible to apply
these techniques for the simple reason that the necessary quantitative basis is
not available in the organisation.

Sometimes scoping is misunderstood as an action that must be performed
only when setting up a new product line; however, it is key that the scope of
the product line is constantly managed throughout the lifetime of the product
line. Managing the scope is a key part of change management in a product
line situation [131]. Only when the scope is constantly managed, it can be
ensured that the organisation adequately reacts to new developments and
opportunities.

Product line development sometimes leads to unexpected opportunities
for an organisation. Here, scoping is particularly relevant to recognise these
opportunities [36]. Some examples of this are reported by Cummins [43] and
Celsiustech [17]. In the case of Cummins, the product line was initially set
up to support the development of engine software for diesel trucks. However,
after developing the product line, the organisation realised that the product
line could be easily extended to support any kind of industrial diesel engine as
well. This led Cummins to move into this market. Similar, in the Celsiustech
case study after the product line for navel battle ships was established, the
company recognised that the surveillance software could also be used in land-
based systems. This in turn led to an extension of the market.

This shows that product line engineering also creates options [53]. Ade-
quate and continuous scoping can open ways to recognise and exploit these
options.

19.2.4 Evaluate the Organisation

The evaluation of the organisation is needed to obtain knowledge of what are
the best actions to take. It may be the case that certain elements of product
line development already exist in the organisation. It may be wise to use them
as a starting point. The Family Evaluation Framework (FEF, see Chap. 6)
is developed for doing such an evaluation. The FEF allows preparing a goal
profile that determines what the company prepares for.

The FEF as presented here is still at its initial stages. It is in use by several
companies that were involved in its definition. In particular, it is used as an
addition to CMM(I) evaluation, providing more details to certain aspects.
However, there are no public reports on the use of FEF available yet. This is
partially due to the fact that the involved companies consider the evaluation
results as proprietary information that should not be shared with others.

An important aspect of the FEF is the explicit separation of the four
BAPO concerns: Business, Architecture, Process and Organisation, all need
attention to enable a healthy product line development.

The FEF is not the first model to evaluate or assess software development.
In particular, in the area of software development processes, there are several
capability evaluation models. The SEI published a Framework for Software

19.2 Prepare 299

Product Line Practice [38] that distinguishes 29 practice areas, which are
divided into three categories.

1. Software engineering practice areas are necessary to apply the appropriate
technology to create and evolve both core assets and products.

2. Technical management practice areas are those management practices
necessary to engineer the creation and evolution of the core assets and
the products.

3. Organisational management practice areas are necessary for the synchro-
nisation of the entire software product line activities.

The SEI’s Product Line Technical Probe (PLTP) allows examining an
organisation’s capabilities to adopt a software product line engineering ap-
proach. The PLTP is based on the SEI’s Framework for Software Product
Line Practice as a reference model in collection and in analysis of data about
an organisation. The results of applying the PLTP include a set of findings,
which characterise an organisation’s strengths and challenges relative to its
product line effort, as well as a set of recommendations.

In addition, there exist several initial economic models to evaluate the
business value of product lines; see e.g. [58, 125]. Jan Bosch proposed an
initial model on evolution of software product line architectures in [28], and
an initial investigation on organisational structures in [27].

19.2.5 Plan the Transition

The business goals are defined, the scope is clear and the organisation has
an understanding of what software product lines are about. The next step is
to plan the transition. That requires designing the right architecture, process
and organisation that support the business goals for the software product line,
and making plans for getting from the current situation to the new one.

The current architectures, processes and organisation structures are cru-
cial in deciding upon the new ones. The Philips Medical Systems case study
is a good illustration. Its decentralised organisation heavily influenced the
way in which it established a common platform. Product development groups
were responsible for their own product portfolio, and many had a product
line of their own. Establishing a new product line that spanned the product
groups meant dealing with the needs and desires of each individual group.
This led to a process where the platform definition was a joint effort, whereas
its implementation was more centralised. One product group was selected to
implement the platform. Change-control boards, with representatives of all
product groups, oversaw the platform’s evolution.

With the architecture, process and organisation in place, two groups were
selected to be the first customers of the new platform. After that, it was left
up to the product groups to plan their own transition to using the common

300 19 Starting with Software Product Line Engineering

platform. The functional scope of the platform was gradually extended us-
ing a component-based architecture. Existing software was transformed into
platform components on a piece-by-piece basis.

Different companies require different approaches. Being a small company,
market maker did not feel the need for heavy processes and organisation struc-
tures. A single team of five developers was enough to set up their product
line. Although this team was process aware, it did not have a fully defined
and documented development process. That was considered too much over-
head for a small company. Instead, people were assigned roles that made clear
what their responsibilities were. Examples of such roles are scoping team, ar-
chitecture manager and component developer. People were left free to fulfil
their responsibilities as they saw fit, although their results were carefully con-
trolled. Within twelve months, the team set up a product line and released
their first products.

As a final example we consider AKVAsmart. The company wanted to min-
imise the risks involved by gradually growing their software product line. Their
plan was to reimplement each of their existing products using the common
assets. For each product added to the line, the software platform grew to sup-
port that product’s needs, but not more. At no point the software platform
should contain more functionality than was needed to support the products
that used it at the time. The architecture that was designed to support this
gradual transition was based on a plug-in framework. The framework itself
was the responsibility of domain engineering, while the plug-ins were devel-
oped and maintained by application engineers. At the time of writing their
case study, the first two products had been successfully ported to the platform
and the next one was in line.

19.3 Transition

The last phase is where the plans are created before they are actually im-
plemented. In practice, the last two phases are often intertwined, unless a
big-bang introduction strategy was chosen.

19.3.1 Roll Out and Institutionalise

Product line engineering can be introduced in a company in many different
ways. Ultimately, the approach used should fit the organisation and its goals.

One of the goals that every organisation that starts with software product
lines should have is to institutionalise the new way of working. Without prod-
uct line engineering, a product line quickly looses its advantages, diminishing
to a set of more and more independent products. Product line engineering
must become the standard way of working with the product line. Changing

19.3 Transition 301

the way things are being done can be a slow and painful process. Special at-
tention must be paid to managing this process and making sure it goes all the
way. Education and gaining support go hand in hand.

market maker identified an opportunity for a range of products that could
be based on a new technology. The company decided to attract new people
and let them build the product line up from the ground. This enabled them to
quickly grow this new line of products without cannibalising on the resources
of its existing portfolio. Close integration with the rest of the company let the
team benefit from the knowledge of their colleagues. Existing software assets
were used to give the new team a running start, and the team was given a
firm deadline to serve as a focus point. As a result, the first product was
ready within twelve months. By then, software product line engineering was
institutionalised as the team’s way of working.

Being in a totally different situation, Philips Consumer Electronics took a
more cautious approach. It spent the first three years to set up an architecture
and build two lead products with it. These products were carefully selected:
they were highly visible but represented a low risk. When the second lead
product was successful, the product line engineering approach was rolled out
across the full range of products in two years. The organisation changed from
one with large, product-oriented teams to one with small product teams and
medium-sized asset teams. The way of working was changed from waterfall
to iterative development. During the transition, developers gradually moved
from the old way of working to the new one, while Philips Research remained
involved to make sure that the processes were carried out consistently.

At Bosch, analysis of market segments lead to the conclusion that there
was a need for not one but two product lines, besides single system develop-
ment projects. Rolling out product line engineering was done using a stepwise
approach. Small pilot projects carried out in corporate research established
the much needed experience inside the company. Next, a single business unit
project was put in place. This project was carefully set up to maximise its
impact on the whole organisation. Its project manager, for example, was
well respected in the business unit. Furthermore, the team was filled with
representatives from several development departments, complemented with
consultants from corporate research. The project had a champion in middle
management, who could ensure that funding was not an issue. Most impor-
tantly, of course, was that the project actually delivered what was promised,
paving the way for similar projects in other parts of the organisation.

Bosch acknowledged that there was a risk that developers and manage-
ment would focus on the technical aspects of the implementation at the cost
of embedding the new processes in the organisation. They used product line
engineering coaches to support the developers and make sure that the new
processes were executed in the right way. A training program for the pro-
cesses and the common architecture was set up to help developers become
productive quickly. The new processes were also documented in the develop-
ment handbook on the company’s intranet.

302 19 Starting with Software Product Line Engineering

One particular pitfall that needs to be avoided is overdoing it: domain
engineering continues to make ever better and more generic assets, but no-
one bothers to make products out of them. A common asset does not bring
any value to the company until it is used in a product. Even worse, the costs
for maintaining the asset begin to pile up as soon as its development begins.

DNV attacks this problem by accepting only those ideas for common assets
that come with a product development project willing to use it. market maker
started discussions with potential customers soon after the development of its
new product line began. It also set a deadline for the first product to be deliv-
ered within twelve months. Philips Consumer Electronics used various ways to
make sure their common assets were useful and used in products, including as-
set developers joining product teams for periods of time and product-specific
branches of asset archives. But it also acknowledges that for every force a
counter-force is needed to keep the balance. Therefore, they made it the per-
sonal responsibility of asset teams that their assets are product-independent
and have long-term value.

19.3.2 Evolving the Product Line

Things change, and product lines are no exception. One particular advantage
of product line engineering is that it increases the freedom of choice that a
company has. Reducing the time and effort it takes to bring new products
to the market means that there is a lot more that can be done. But to keep
this advantage, the product line should evolve to continue to support the
needs and wishes of its owners. Is the architecture still in top condition? Are
the processes surrounding the product line still effective and efficient enough?
Do the organisational structures fit with the current business goals? What
opportunities and threats do we see approaching in the future? These kinds
of questions need to be asked and answered regularly to make sure that the
product line engineering effort continues to bring value to the company.

One way to keep these items on the agenda is to use roadmapping. A
roadmap is like a plan for the long-term future, but with this respect that
nobody believes it. The further a plan looks ahead, the less precise it can be,
as the uncertainty increases the further one looks into the future. A roadmap
can start in the near future with well-defined and planned items, continue with
resolutions in the mid-term, and change to vague expectations and predictions
in the longer-term. The idea is not to predict the future but to be aware of
the fact that things change and to continuously steer the product line in the
right direction. In a situation where multiple groups depend on each other,
as is often the case with software product lines, sharing roadmaps for the
applications and the platform can be a good way of ensuring that all groups
agree on the direction in which the product line evolves.

At Philips Medical Systems, the scope of the product line grew in both
foreseen and unforeseen ways. Although it was part of the institutionalisation

19.4 Conclusion 303

plan to start with a limited scope in both functionality and number of appli-
cations, the latter grew larger than was expected beforehand. Along the years,
Philips acquired several medical companies. Each of them became involved in
the product line engineering effort, with key people of the acquired companies
joining this product line’s community.

The organisation changed in another way as well. The domain engineering
effort started as a task of an established product group. Over time, this plat-
form team was separated more and more from the application teams, became a
separate department within the product group and finally a sub-organisation
of its own. These changes reflected the needs of the domain engineers at the
different times in the life of the product line. At first, the experience and do-
main knowledge of the people in the product group were much needed to get
things going. Later, conflicts of interest started to arise because the resources
of a single department needed to be shared between domain and application
engineering. Currently, the size of the domain engineering group justifies it
being a sub-organisation within the company.

Roadmapping is a continuous activity at both the domain and the appli-
cation levels in Philips Medical Systems. The planned use of the platform is
on the roadmaps of the product groups, and the platform’s roadmap reflects
that.

19.4 Conclusion

In short, these are the steps to be taken when starting with software product
line engineering:

• Define a business strategy and vision: if the company’s strategy does not
support the investments that are needed to make product line engineering
work, the introduction makes no sense and will most likely fail.

• Learn about software product line engineering: without a solid understand-
ing of the pros and cons of this approach, a sensible decision cannot be
made.

• Perform a risk analysis in the context of the organisation: the companies
in our case studies barely mention risk analysis as a part of their approach.
This is not so surprising, given that these companies were pioneering a new
approach to software development. Had these companies done a thorough
risk analysis, they probably would have backed off, and thus never made it
as a case study for this book. The Siemens case, where a risk analysis led to
a very partial adoption of product line engineering, illustrates this. Today,
the situation is different. Much more is known about software product
lines, and many companies have successfully deployed them. Therefore, it
makes sense to do a good risk analysis now, before making a decision.

• Gain support for the new way of working : a broad range of stakeholders
must understand and ultimately embrace the concepts of software product
line engineering to make it work.

304 19 Starting with Software Product Line Engineering

• Set concrete goals for the transition: well-chosen goals help an organi-
sation to stay focused on what is important, and to avoid pitfalls like
over-engineering or forgetting to institutionalise the new way of working.

• Scope the product line to determine its boundaries and contents: with the
strategy, risks and goals set, the scope of the product line actually describes
what it is that will be created.

• Evaluate the organisation for its current status and the ability to adopt
the desired way of working: without knowing where you are now, it is very
hard to determine the best route to your destination. Here, all BAPO
aspects are relevant.

• Plan the transition from the current development process to product line
engineering: the transition plan depends heavily on the business strategy,
risk profile, and current situation of the company among others. A good
plan helps a company to stick to its course and successfully deploy product
line engineering in the organisation.

• Roll out and institutionalise the new way of working: the main goal is to
get a product line up and running. But just as important is to embed this
way of working into the organisation.

• Evolve the product line to continuously meet the goals of the organisation:
a product line that fits the organisation’s needs is a valuable asset. To
keep this value, the product line should evolve with these needs. To keep
up with all the changes that a company deals with, roadmapping should
be an ongoing activity.

20

Outlook

Product line engineering has come a long way since the initial work by Parnas
in the 1970s [101]. For quite some years, it seemed that product line engi-
neering would not make the transition into industrial practice, but finally it
became a reality. In hindsight, it becomes clear why such a long time was
needed in order to transition the concepts into practice: software business
needed to become a more “normal” kind of business, one in which companies
do not develop one kind of software on one day and a completely different
kind on another. Today, we are in a situation where companies are in fierce
competition based on similar products and thus need to provide a wide range
of well-adapted solutions for their customers. Further, software systems have
grown considerably in size, making development effort for software a key part
of total costs for most organisations.

This also sheds some light on what kind of companies should not look at
product line engineering if it is sufficient for you to provide a single product
version for your customer, if you make completely different projects today
from the ones you made yesterday, if being at the forefront of innovation
means to you that each new product has to be developed from scratch, than
product line engineering is not made for you.

For all other kinds of cases, companies can expect substantial return on
investment from their decision to start a product line effort. Our case studies
have shown this across a large range of businesses, organisation sizes, indus-
tries and even approaches taken towards product line engineering. Now, the
questions are Where to go from here? What needs further research? Where
do companies venture into new grounds where no well-established routes are
available, yet?

20.1 Where We Are

A lot of companies have started product line initiatives over recent years.
These companies range from very small to very large. The approach has gained
significant attention and proves to be a basis for significant cost reductions in

306 20 Outlook

software development. However, product line engineering has not yet received
the strong attention that should be connected to the level of improvements
that can be derived from it. It is important to note that there is currently a
strong focus on embedded systems, but only comparatively little work from
the information systems world. However, it can be applied there as well as the
market maker case study in this book (Chap. 11) and other reports show (e.g.
[34, 126]). It is difficult to precisely pin down the reasons for this embedded
focus, but certainly significant effort is required to make the approach for
information systems as well-known as it is in the embedded systems context.

Another commonality among the different case studies we discussed in
Part II of this book is that most of them applied an approach to product
line engineering that was invented as the companies undertook the effort of
applying product line engineering. While at this point a significant body of
knowledge on product line engineering has been established and also certain
guidelines are known, there is not yet a sound portfolio of approaches from
which techniques can be selected on a rational basis. Although good general
guidelines can be given now, systematic and precise customisation guidelines
are not yet available.

Most of the companies of our case studies are large organisations. While
this might be due to some bias in our selection, it currently seems that es-
pecially large organisations address the challenge of product line engineering
systematically. However, experience shows that also small organisations can
profit considerably from product line engineering. This has been shown among
other cases in the market maker case study (cf. Chap. 11). Again, it seems
there is the major issue that awareness must be created among smaller com-
panies about the opportunities of product line development.

So far, product line engineering can still be regarded as a rather new
technology in software engineering with about half a dozen years since it is
really heading into mainstream and about ten years since it was accepted as
a vision in many companies. Thus, while product line engineering is already
somewhat established it still has some shortcomings. We will discuss those
and potential remedies in the following section.

20.2 Current Shortcomings of Product Line Engineering

If we look at ways to improve product line engineering, we can distinguish
two major perspectives:

1. True shortcomings may actually provide obstacles in the wide-spread
adoption of product line engineering.

2. Ways in which we could go beyond the state of the art in product line
engineering, focusing mostly on more efficient and potent approaches.

In this section, we will focus on shortcomings that may hinder product line
adoption. In the next section, we will focus on making product line engineering
an even more potent approach.

20.2 Current Shortcomings of Product Line Engineering 307

Unfortunately, there are quite a number of shortcomings that may hinder
effective product line adoption. Although it is possible to effectively deal with
each of them, we believe that product line engineering will need to provide
better solutions in order to further improve its acceptance. We can distinguish
two major areas of improvement:

1. Improvement of methods.
2. Improvement in technology and tools.

20.2.1 Methodological Shortcomings

The first and perhaps most profound shortcoming is still the lack of experimen-
tal analysis and detailed comparisons of product line engineering techniques.
Luckily over the last ten years a lot of research has been devoted to the ques-
tion whether product line engineering is a viable and successful approach for
organisations in comparison with standard (single-system) software engineer-
ing methods. Last but not least, the wealth of case studies we report on in
this book and our cross-sectional analysis improves this situation. The gen-
eral outcome can simply be summarised as follows: product line engineering
enables organisations to achieve significant reductions in development effort
while simultaneously improving overall software quality.

However, while many different approaches to product line engineering were
established, only little analysis was devoted to the comparison of their respec-
tive advantages and disadvantages. Thus, we can currently only observe the
multitude of approaches (e.g. for variability modelling), but cannot thoroughly
define their respective advantages and disadvantages. This is less problematic
from a practical point of view, as so far all approaches to product line engineer-
ing seem to be at least better than single system engineering. Nevertheless,
it is still a rather unsatisfactory situation. Here, we need a step towards the
comparative analysis of different product line engineering techniques in order
to provide the practitioner with a qualified portfolio of techniques.

The second shortcoming is particularly important for practitioners that
ponder the question of whether they should move towards a product line
engineering approach. This is the lack of detailed and sound business and
economical models of product line engineering. This makes it currently very
difficult to perform product line engineering in a manner explicitly driven
by business goals. While all our case study contributors experienced signif-
icant benefits from product line engineering, they were not able beforehand
to quantitatively estimate the benefits they would gain from product line en-
gineering. While economical models of product line engineering and software
reuse in general exist [52, 86, 22, 125], they do not provide sufficiently de-
tailed guidance and there is a lack of adequate and well-supported parameter
estimates for determining the benefits beforehand with an acceptable mar-
gin of error. Again, while unsatisfactorily, this situation need not haunt the
practitioner as still the general agreement is that significant benefits can be

308 20 Outlook

derived from product line engineering that cannot be achieved with traditional
software engineering approaches.

Variability management is a key aspect of product line engineering. Nev-
ertheless, we must currently accept the lack of a generally accepted theory
of variability. While a vast range of variability management techniques were
proposed so far, there is agreement only on the general aspects of variabil-
ity and not on the details of the required expressiveness. The availability of
these techniques is currently a major bonus of product line engineering, as
they constitute a core element of product line engineering. However, there
is no systematic guidance for selecting (or constructing) a variability man-
agement approach for specific development situations and contexts. A brief
overview of variability management approaches already shows that the var-
ious approaches share a significant amount of commonality. Nevertheless, a
generalisation model encompassing the large number of different approaches
is still lacking, although currently work along these lines is under way [42, 1].
Also, the traceability of variability (identifying and understanding parts of
documents and products related to a specific variability) is an important
issue.

At this point, even in organisations that systematically perform prod-
uct line development, quality assurance is often done very similar to a single
systems approach. Here, further work is required. This includes both review
techniques and testing. In particular, the question how to benefit from com-
monalities in the system functionality in order to reduce overall testing effort
(not only test case derivation) will require substantial effort for some time to
come. Certain effort reductions are already today part of industrial practice
as the Siemens case study (cf. Chap. 16) shows.

Current frameworks for software process assessment like the CMMI do
not address product line engineering at all. As a result, they are not capable
of assessing the product line maturity of an organisation; they are not even
able to assist in this undertaking. Especially for the CMMI, extensions for
product line engineering have been developed [145], but these are not yet gen-
erally known and accepted. In this book we presented the Families Evaluation
Framework (cf. Chap. 6). This does not only include extensions to the CMMI
for addressing the concerns mentioned above, it also addresses a wider range
of aspects: business, architecture and organisation.

As product line engineering will become an increasingly accepted and wide-
spread approach, problems which have so far hardly surfaced will become ma-
jor issues. A prime example of this is evolution support. While so far the focus
in the product line engineering community was on the successful adoption
of product lines, it will shift to the evolution and sustained development of
product line engineering. This becomes a more complex concern, compared
to single system development, as successful product lines are inherently long-
lived and need to support a rapidly growing number of products over time.

Software product line engineering will increasingly be used in a very com-
plex situation, see e.g. Chap. 13. Several product lines are connected and

20.2 Current Shortcomings of Product Line Engineering 309

built upon each other. Moreover, development is distributed in the organi-
sation and it even crosses organisational boundaries. In most cases, such a
complex situation is mastered by the introduction of a hierarchy. Products
developed by one product line are used as basic building blocks in another.
This introduces a series of dependencies among the product lines that must
be managed correctly through traceability for maintenance. This is still not
solved appropriately today and the involved business models are much more
complicated than those for a single product line.

20.2.2 Technology and Tools

From a technology perspective, product line engineering has been combined
and applied in connection with a large number of different implementation
technologies. Some collections do also provide catalogues of implementation
techniques.

A particularly interesting area is Domain-Specific Languages (DSLs). In
some sense, they can be regarded as an extreme form of product lines. The
core idea of a domain-specific languages approach is to describe the variability
of a product line based on a specifically developed high-level language. Com-
monalities are not made explicit in the language. They are treated as part of
the domain. This is certainly not an approach for all cases; however, it has
clear advantages under certain circumstances [127].

So far work on product lines typically focuses on using a single approach
to product line engineering throughout the development. This certainly re-
sults in certain simplifications in the development process, but it fails to
achieve certain benefits that could result from a systematic integration of
domain-specific languages and traditional variability management approaches
like feature modelling. So far this integration is only weakly explored. Being
strongly related to domain-specific languages the software factory approach
is currently advocated by Microsoft [63].

A generative approach that is currently explored is the area of model-based
development. Here, in particular, the Model-Driven Architecture Approach
(MDA) attracts a lot of attention. While some work has been done so far to
integrate model-driven approaches and product line engineering, the field is
so far explored only very little. It seems that both MDA and product line en-
gineering are complementary to some extend. MDA focuses on implementing
technical variability, e.g. the alternative platforms .NET or J2EE, while prod-
uct line engineering focuses mostly on the customer-oriented flexibility, i.e. in
particular the variability in functional and non-functional requirements that
results from different customer requirements. As generative techniques are in-
creasingly accepted in industrial practice, we expect a stronger integration of
product line engineering with MDA also for the near future. The potential for
further cost reduction can be expected to be significant.

From a practical perspective the current lack of tool integration of product
line approaches is very important. None of the mainstream software engineer-

310 20 Outlook

ing environments currently explicitly support the notion of variability or of
a product line. So far only few specialised companies offer product line tool
support. This is typically handled by extending existing tools in the form of
a plug-in. Examples for such tool extensions are the GEARS-tool [60], which
provides a layer on top of configuration management, or Pure::Variants [110],
which provides an extension to such tools as requirements engineering tools.
Besides those commercialised tools, there also exists a large number of prod-
uct line tools, which have mostly been developed from a research context and
thus typically do not provide a stable production environment [7, 33, 130].

20.3 Going Beyond Product Lines

If there is a general trend that can be seen in software engineering, then it
is certainly the trend to higher flexibility and adaptation to customer needs.
Product line engineering as we see it today is a result of this development. At
its core we see a strong demand of organisations to provide tailored solutions
to their customers. However, the demand for customisation is constantly in-
creasing; plug-in architectures that enable run-time addition of functionality
are a result of this trend. Thus, it does not require much guess-work to ex-
pect run-time dynamism, end-user customisation and context-awareness to be
key topics of future product lines. First attempts at expanding product line
engineering to address these problems have already been made [85, 65].

A key issue in these areas is the notion of binding time: When will the
decision be made? What functionality shall be provided as part of the sys-
tems? Generally, this is constantly moving to later and later points in time.
Traditionally, this has been done mostly statically. Often the last point was
compile time or link time. To some extend also startup of the system played
a role as some systems performed self-configuration during initialisation.

Systematic approaches to end-user customisation require open architec-
tures that can integrate a wide range of external functionality which is not
yet known at development time. At the same time quality guarantees for the
resulting systems must be given. This requires new ways of integrating these
components as well as new ways of assuring the component quality at run-
time.

A different dimension of end-user customisation that goes also in terms of
expressiveness beyond the traditional forms of product line engineering is the
customisation to user-specific business processes. This form of customisation
is very well known in information systems, but has hardly been addressed
from a product line perspective so far. Traditionally, variability management
is strongly focused on feature-based approaches; however, business processes
go beyond this in terms of their expressiveness. Here, new approaches for
describing the customisation like the business process execution language
(BPEL) have emerged [76]. This is typically combined with a service-oriented

20.4 Product Line Engineering for Practitioners 311

architecture (SOA). BPEL can be regarded as a domain-specific language
particularly adapted to business process customisation.

Context-aware and autonomous systems have recently become rather pop-
ular, especially in combination with ambient intelligence and pervasive com-
puting [152, 64]. This concept goes even a step further, as here the decision
about the potential form of adaptation is made by the system itself. Current
variability management approaches are not yet able to capture these decisions
and the conditions under which they should be triggered. However, as these
forms of end-user customisation and self-adaptivity will become increasingly
relevant, their integration with product line engineering must be addressed.
Especially, as some products in a single product line might be producer-
customised, some products may support end-user customisation, while some
products may even support context-awareness – all for the same variation.

20.4 Product Line Engineering for Practitioners

A few years ago product line engineering was only an approach that was
used by a few companies. Of course many organisations had already devel-
oped product lines for a market, but only few were able to fully exploit the
large potential that such a situation entails. Currently, we see the number of
companies that aim to transition to a product line engineering significantly
increasing. Like other technologies before, product line engineering goes main-
stream. The case studies we were able to collect and analyse in this chapter
emphasised this lesson. We are certain that while currently companies that
transition to a product line approach are able to gain significant advantages
over their competitors, in a few years, time organisations will have to adopt
product line engineering in order not to suffer from a significant disadvantage
over their competitors.

As a result of the analysis of the various case studies in this book, we were
able to provide some general guidelines for practitioners who are interested in
product line engineering as a way forward for their development organisation.
We will now briefly summarise some of these guidelines:

• Product line engineering adoption becomes much more systematic if an
appropriate evaluation of the current situation and the particular benefits
that are planned to achieve are made. An approach for performing such an
assessment has been introduced with the Families Evaluation Framework
(FEF). By using such an approach, an organisation can determine where
it is currently situated and determine a potential future development ap-
proach.

• A commonality across all observed case studies was that architecture
played a significant role. A clear technical vision needs to be established
that allows to support the specific variabilities required by future prod-
ucts in the product line. Thus, any organisation which is currently weak

312 20 Outlook

on architecting will need to improve this capability in order to succeed at
product line engineering.

• On the other hand, process competence does not seem to be as important
as it is sometimes taken. You do not need to be at CMMI level 5 in order
to be successful at product line engineering. Level 2 is enough (at least you
should follow your process). While improvements in process competence
will enable to more reliably achieve product line benefits, sufficient case
studies establish that CMMI levels alone will not significantly impact your
product line performance.

• Organisation is an issue. Clear roles for developing the reuse infrastructure
(domain engineering) and for developing the individual products must be
established. Even if the same person may fill the same role, it is impor-
tant that the focus of the current work at each moment in time is clear.
As a consequence, while such an organisational structure needs to be es-
tablished, this does not mean that a formal reorganisation needs to take
place. Such a scheme can actually be superimposed on rather traditional
role schemata.

There are many ways of performing product line engineering. Despite these
differences, there are some commonalities, which we tried to highlight in this
book. The above list shows only some of the key aspects one should have in
mind when starting product line engineering.

Product line engineering is finally here – and it is here to stay. If you are
in a software business where development costs, time to market and quality
matter – and who is not – then the question is how long can you afford to
work without product line engineering or with a sub-optimal approach? We
hope this book helps you to systematically go forward in terms of the cost-
effectiveness of your software development.

Glossary

Application Assets are the development assets of specific product line ap-
plications.

Application Design is the sub-process of application engineering where the
reference architecture is specialised into the application architecture.

Application Engineering is the process of software product line engineer-
ing in which the applications of the product line are built by reusing
domain assets and exploiting the variability of the product line.

Application Realisation is the sub-process of application engineering where
a single application is realised according to the application architecture
by reusing domain realisation assets.

Application Requirements Engineering is the sub-process of application
engineering dealing with the elicitation of stakeholder requirements, the
creation of the application requirements specification, and the manage-
ment of application requirements.

Application Testing is the sub-process of application engineering where
domain test assets are reused to uncover the evidence of defects in the
application.

Architecture, see software architecture.
Architectural Structure is the decomposition of a software system into

parts and relationships.
Architectural Texture is the collection of common development rules for

realising the applications of a software product line.
BAPO is an acronym that refers to Business, Architecture, Process, and

Organisation. Based on these four dimensions a specific product line en-
gineering approach can be characterised.

Binding Time defines points in time when the decision must be made
whether a feature that is available in the product line infrastructure will
be part of a specific product.

Component is a unit of composition with contractually specified compo-
nent interfaces and explicit context dependencies only; it can be deployed
independently and is subject to composition by third parties.

314 Glossary

CMMI is an abbreviation for Capability Maturity Model Integration. This
is a widely used approach for process improvement approach to succeed
the CMM approach.

Configuration describes the specific assets that together constitute a final
product. The assets can be domain and application assets.

Development Asset is the output of a sub-process of domain or application
engineering. Development assets encompass requirements, architecture,
components and tests.

Development for Reuse refers to any development activity that does not
directly aim at developing a product, but rather aims at developing assets
which will be reused by other activities.

Development with Reuse refers to any development activity which takes
advantage of existing, reusable assets.

Domain is an area of process or knowledge driven by business requirements
and characterised by a set of concepts and terminology understood by
stakeholders in that area. The problem domain and the solution domain
are two kinds of domains.

Domain Assets are reusable development assets created in the sub-processes
of domain engineering. Synonyms are platform assets and product line as-
sets.

Domain Design is the sub-process of domain engineering where a reference
architecture for the entire software product line is developed.

Domain Engineering is the process of software product line engineering in
which the commonality and the variability of the product line are defined
and realised.

Domain Realisation is the sub-process of domain engineering where the set
of reusable components and interfaces of the product line is developed.

Domain Requirements Engineering is the sub-process of domain engi-
neering where the common and variable requirements of the product line
are defined, documented in reusable requirements assets and continuously
managed.

Domain Testing is the sub-process of domain engineering where the evi-
dence of defects in domain assets is uncovered and where reusable test
assets for application testing are created.

Families Evaluation Framework (FEF) is a reference framework for char-
acterizing certain properties of a product line engineering approach. The
framework can be used by a comparison of a desired state with the actual
state to improve the product line engineering approach of an organisa-
tion. The framework was developed within the Families project, hence
the name.

Opportunistic Reuse refers to a development model where appropriate as-
sets are reused from other projects if they can be identified and adapted
during product development. In this case, no specific process exists for
developing explicit assets for reuse.

Platform, see software platform.

Glossary 315

Platform Assets, see domain assets.
Process defines how software development is – or should be — performed,

i.e. the specific activities that need to be conducted. In order to perform
product line engineering, a single system development process needs to be
adequately adapted.

Product Line Assets, see domain assets.
Product Line Adoption describes the process of changing to a product

line engineering approach.
Product Line Engineering, see software product line engineering.
Product Management is the process of controlling the development, pro-

duction and marketing of the software product line and its applications.
Product-Specific is a functionality or a characteristic of a final system that

is not shared with other products in the software product line.
Product Portfolio defines the particular products that shall be developed.

In general, a product portfolio defines all the products relevant to a com-
pany (marketed product line). In the context of a product line, it usually
refers to the products that are developed based on the product line assets
(engineered product line).

Reference Architecture is a core software architecture that captures the
high-level design of a software product line.

Requirement is (1) A condition or capability needed by a user to solve a
problem or achieve an objective. (2) A condition or capability that must
be met or possessed by a system or system component to satisfy a con-
tract, standard, specification or other formally imposed document. (3) A
documented representation of a condition or capability as in (1) or (2)
[IEEE Std 610.12-1990].

Requirements Assets are products of the requirements engineering process
specified using natural language and/or requirements models.

Scoping is the process of determining the boundaries of the product line
engineering activity. This can be performed on three levels: product port-
folio, domain and assets.

Software Architecture is the set of the main guiding development princi-
ples for one or more software applications. The principles are the solution
for one or more architectural concerns dealing with quality. There are
other, more instrumental, definitions in the literature.

Software Platform is a set of software sub-systems and interfaces that form
a common structure from which a set of derivative products can be effi-
ciently developed and produced.

Software Product Line Infrastructure is the collection of all assets that
support the development of products in the product line. This does en-
compass the software platform and does also include all forms of docu-
mentation that is generated as part of the development. Common tooling
is also part of the infrastructure.

316 Glossary

Software Product Line Engineering is a paradigm to develop software
applications (software intensive systems and software products) using soft-
ware platforms and mass customisation.

Systematic Reuse refers to a development model where appropriate assets
are developed specifically in a planned way for reuse. More generally it
can be said that systematic reuse is characterised by an explicit domain
engineering activity.

Two-Life-Cycle Approach this refers to the fact that domain engineering
and application engineering can be seen as two loosely coupled life cycles
that together define product line engineering.

Variability is any aspect where characteristics in the product line (respec-
tively in the assets) differ for different products.

Variability in Space is the existence of an asset in different shapes at the
same time.

Variability in Time is the existence of different versions of an asset that
are valid at different times.

Variation Point is a point where variation occurs in a domain asset, i.e.
at this point in the fact a selection needs to be made to arrive at an
instantiated asset.

References

1. T. Aikainen, T. Männistö, and T. Soininen. A unified conceptual foundation for
feature modelling. In Proceedings of the Tenth International Software Product
Line Conference, SPLC 10, pages 31–40, 2006.

2. J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen, P. Selonen, M. Siikarla,
and T. Systä. xUMLi: Towards a tool-independent UML processing platform.
In K. Osterbye, editor, Proceedings of the Nordic Workshop on Software De-
velopment Tools and Techniques, 10th NWPER Workshop. IT University of
Copenhagen, 2002.

3. P. America, H. Obbink, R. van Ommering, and F. van der Linden. CoPaM:
A component-oriented platform architecting method family for product family
engineering. In Proceedings of the First Software Product Line Conference
(SPLC-1), pages 167–180. Kluwer, 2000.

4. E. Andersen. Information models for component design and implementation. In
ICSSEA’99, 12th International Conference on Software Systems Engineering
and Applications, 1999. ftp://ftp.nr.no/pub/egil/icssea99-slides-im-comp.ppt.

5. E. Andersen. SINAI - a UML-based architectural framework for evolutionary
information systems. Technical report, Norwegian Computer Center, June
2001.

6. E. Andersen and B. Hansen. Providing persistent objects to globally dis-
tributed sites. In NOSA’99, second Nordic Workshop on Software Architec-
ture. University of Karlskrona/Ronneby, 1999. ftp://ftp.nr.no/pub/egil/brix-
ws.pdf.

7. M. Antkiewicz and K. Czarnecki. Featureplugin: Feature modeling plug-in for
eclipse. In OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, 2004.

8. Automotive open system architecture website. http://www.autosar.org/.
9. F. Bachmann and L. Bass. Managing variability in software architectures. In

ACM SIGSOFT Symposium on Software Reusability, pages 126–132, 2001.
10. F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and A. Vil-

big. A meta-model for representing variability in product family development.
In Proceedings in the 5th International Workshop on Product Family Engineer-
ing (PFE’5), pages 66–80, 2003.

11. R. Balzer. An architectural infrastructure for product families. In Proceedings
of the Second International ESPRIT ARES Workshop, volume 1429 of Lecture
Notes in Computer Science, pages 158–160. Springer, 1998.

318 References

12. S. Bandinelli and G. Mendieta. Domain potential analysis: Getting serious
about product-lines. In Third International Workshop on Software Architec-
tures for Product Families (IW-SAPF’3), Las Palmas de Gran Canaria, Spain,
March 15–17, pages 75–81, 2000. Also as LNCS 1951.

13. V. Basili. The experimental paradigm in software engineering. In H. Rombach,
V. Basili, and R. Selby, editors, Experimental Software Engineering Issues: A
critical assessment and future directions, pages 3–12. Lecture Notes in Com-
puter Science Nr. 706, Springer, September 1992.

14. V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz. Lessons learned from
25 years of process improvement: The rise and fall of the NASA software en-
gineering laboratory. In Proceedings of International Conference on Software
Engineering (ICSE 2002), 2002.

15. V. Basili and H. Rombach. Support for comprehensive reuse. IEEE Software
Engineering Journal, 6(5):303–316, September 1991.

16. V. Basili, R. Selby, and D. Hutchens. Experimentation in software engineering.
IEEE Transactions on Software Engineering, SE-12(7):733–743, July 1986.

17. L. Bass, P. Clements, R. Kazman, and L. Brownsword. Celsiustech: A case
study in product line development. In Software Architecture in Practice, chap-
ter 16. Addison–Wesley, 1998.

18. L. Bass, M. Klein, and F. Bachmann. Quality attribute design primitives and
the attribute driven design method. In Proceedings of the 4th International
Workshop on Product Family Engineering (PFE’4), 2004.

19. J. Bayer, O. Flege, P. Knauber, R. L., D. Muthig, K. Schmid, T. Widen, and
J.-M. DeBaud. PuLSE: A methodology to develop software product lines. In
Proceedings of the ACM SIGSOFT Symposium on Software Reusability, pages
122–131, 1999.

20. A. Birk, G. Heller, I. John, T. von der Maßen, K. Müller, and K. Schmid.
Product line engineering: The state of the practice. IEEE Software, 20(6):52–
60, 2003.

21. Joshua Bloch. Effective Java Programming Language Guide. Sun Microsystems
Inc., 2001.

22. G. Böckle, P. Clements, J. McGregor, D. Muthig, and K. Schmid. A cost model
for software product lines. In Proceedings in the 5th International Workshop
on Product Family Engineering (PFE’5), pages 310–316, 2003.

23. G. Böckle, P. Clements, J. McGregor, D. Muthig, and K. Schmid. Calculating
ROI for software product lines. IEEE Software, 21(3):23–31, 2004.

24. B. Boehm, C. Abts, W. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy,
D. Reifer, and B. Steece. Software Cost Estimation with COCOMO II. Prentice
Hall PTR, 2000.

25. J. Bosch. Design and Use of Software Architectures. Addison–Wesley, 2000.
26. J. Bosch. Organizing for software product lines. In Third International Work-

shop on Software Architectures for Product Families (IW-SAPF’3), Las Palmas
de Gran Canaria, Spain, March 15–17, pages 126–143, 2000. Also as LNCS
1951.

27. J. Bosch. Software product lines: Organizational alternatives. In Proceedings
of the 23rd International Conference on Software Engineering, pages 91–100.
IEEE Computer Society Press, 2001.

28. J. Bosch. Maturity and evolution in software product lines: Approaches, arte-
facts and organisation. In Software Product Lines – Proceedings of the Second

References 319

International Conference, SPLC 2, volume 2379 of Lecture Notes in Computer
Science, pages 257–271. Springer, 2002.

29. R. Bourgonjon. The evolution of embedded software in consumer products. In
International Conference on Engineering of Complex Computer Systems, 1995.
unpublished keynote address.

30. D. Bredemeyer. Software architecture workshop, course handouts. http://
www.bredemeyer.com/, 2002.

31. BRIX workflow. http://www.dnv.com/software/workflow.
32. K. Brockschmidt. Inside OLE, second edition. Microsoft Press, 1995.
33. S. Bühne, K. Lauenroth, and K. Pohl. Modelling requirements variability

across product lines. In Proceedings of the Requirements Engineering Confer-
ence (RE’05), pages 41–50, 2005.

34. R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s experience with a reac-
tive software product line approach. In Proceedings of the 5th International
Workshop on Product Family Engineering (PFE’5), pages 317–322, 2003.

35. CAFÉ project website. http://www.esi.es/Projects/Cafe, 2003.
36. P. Clements. On the importance of product line scoping, 2001.
37. P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures:

Methods and Case Studies. Addison–Wesley, 2002.
38. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.

Addison–Wesley, 2001.
39. Software engineering institute: CMMI web site. http://www.sei.cmu.edu/

cmmi/cmmi.html.
40. M. Conway. How do committees invent. Datamation, 14(4):28–31, April 1968.
41. Cruise control. http://cruisecontrol.sourceforge.net.
42. K. Czarnecki, C. Kim, and K. Kalleberg. Feature models are views on ontolo-

gies. In Proceedings of the 10th International Software Product Line Conference
(SPLC 2006), pages 41–51, 2006.

43. J. Dager. Cummin’s experience in developing a software product line archi-
tecture for real-time embedded diesel engine controls. In P. Donohoe, edi-
tor, Software Product Lines: Experience and Research Directions, Proceedings
of the First Software Product Line Conference, SPLC1, pages 23–46. Kluwer
Academic Publishers, 2000.

44. S. Deelstra, M. Sinnema, and J. Bosch. Experiences in software product fam-
ilies: Problems and issues during product derivation. In Proceedings of the
Software Product Line Conference, SPLC’04, pages 165–182, 2004.

45. Department of Defense — Software Reuse Initiative, Version 3.1. Domain
Scoping Framework, Volume 2: Technical Description, 1995.

46. DICOM. http://medical.nema.org/.
47. D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson. Applying software

product-line architecture. IEEE Computer, 30(8):49–55, August 1997.
48. DNV software: Best engineering practice. http://www.dnv.com/software/

workflow/bestEngineeringPractise.asp.
49. ESAPS project website. http://www.esi.es/Projects/Esaps, 2001.
50. M. Paulk et al. Capability maturity model of software, version 1.1. Technical

report, Software Engineering Institute, Carnegie Mellon University, 1993.
51. FAMILIES project website. http://www.esi.es/Projects/Families, 2005.
52. J. Favaro. A comparison of approaches to reuse investment analysis. In Proceed-

ings of the Fourth International Conference on Software Reuse, pages 136–145,
1996.

320 References

53. J. Favaro, K. Favaro, and P. Favaro. Value based software reuse investment.
Annals of Software Engineering, 5:5–52, 1998.

54. S. Ferber, J. Haag, and J. Savolainen. Feature interaction and dependencies:
Modeling features for reengineering a legacy product line. In Software Product
Lines – Proceedings of the Second International Conference, SPLC 2, pages
235–256. Springer, 2002.

55. M. Fowler. Analysis Patterns: Reusable Object Models. Addison–Wesley, 1997.
56. M. Fowler. Dealing with roles. In Proceedings of the 4th Annual Conference

on Pattern Languages of Programs, 1997.
57. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Im-

proving the Design of Existing Code. Addison–Wesley, 2000.
58. C. Fritsch and R. Hahn. Product line potential analysis. In Proceedings of the

Software Product Line Conference, SPLC’04, pages 228–237, 2004.
59. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison–Wesley, 1995.
60. Product demo Gears. http://www.biglever.com/demo/GearsSelfGuided

Tour.html, September 2006.
61. J. Girard, M. Verlage, and D. Ganesan. Monitoring the evolution of an OO

system with metrics: an experience from the stock market software domain.
In Proceedings of the 20th International Conference on Software Maintenance,
September 2004.

62. M. Glaser, W. Grimm, A. Schneider, W.Stolz, H. Hönninger, H.-J. Kugler, and
P. Kirwan. Success factors for software processes at Bosch Gasoline Systems
GS. In 11. Internationaler Kongress Elektronik im Kraftfahrzeug (VDI), 2003.

63. J. Greenfield. Software Factories. Hungry Minds, 2004.
64. IST Advisory Group. Ambient intelligence: from vision to reality. ftp://ftp.

cordis.europa.eu/pub/ist/docs/istag-ist2003 consolidated report.pdf, Septem-
ber 2006.

65. S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using product line techniques
to build adaptive systems. In Proceedings of the 10th International Software
Product Line Conference (SPLC 2006), pages 141–150, 2006.

66. C. Hammel, H. Jessen, B. Boss, A. Traub, C. Tischer, and H. Hönninger. A
common software architecture for diesel and gasoline engine control systems of
the new generation EDC/ME(D)17. In 2003 SAE World Congress, 2003.

67. A. Helferich, K. Schmid, and G. Herzwurm. Reconciling marketed and engi-
neered software product lines. In Proceedings of the 10th International Software
Product Line Conference (SPLC’06), pages 23–27, 2006.

68. A. Helferich, K. Schmid, and G. Herzwurm. Softwareproduktlinien für An-
wendungssysteme: eine Analyse aus Techniksicht und Marktsicht. In Multi-
konferenz Wirtschaftsinformatik 2006; Band 2: Software-Produktmanagement,
pages 237–248, 2006. In German.

69. Integrating the healthcare enterprise — radiology technical frameworks.
http://www.rsna.org/IHE/tf/ihe tf index.shtml, 2003.

70. ISO/IEC FCD 9126 ”Information Technology — Software Product Quality-
Part 1: Quality Model”, 1998.

71. I. Jacobson, M. Griss, and P. Jonsson. Software Reuse — Architecture, Process,
and Organization for Business Success. Addison–Wesley, 1997.

72. M. Jaring, R. Krikhaar, and J. Bosch. Representing variability in a product
line of MRI scanners. Software, Practice and Experience, 34:69–100, 2004.

References 321

73. M. Jazayeri, A. Ran, and F. van der Linden. Software Architecture for Product
Families. Addison–Wesley, 2000.

74. L. Jones and L. Northrop. Product line adoption in a CMMI en-
vironment. Technical Report CMU/SEI-2005-TN-028, Software Engi-
neering Institute, Carnegie Mellon University, 2005. http://www.sei.
cmu.edu/publications/documents/05.reports/05tn028/05tn028.html.

75. H. Jonkers. Interface-centric architecture descriptions. In Working IEEE/IFIP
Conference on Software Architecture (WICSA’01), 2001.

76. D. Jordan and J. Evdemon. Oasis web services business process exe-
cution language (WSBPEL) TC. http://www.oasis-open.org/committees/
tc home.php?wg abbrev=wsbpel, September 2006.

77. junit testing framework. http://www.junit.org.
78. E. Kamsties, K. Pohl, S. Reis, and A. Reuys. Testing variabilities in use case

models. In Proceedings of 5th International Workshop on Product Family En-
gineering (PFE-5), volume 3014 of Lecture Notes in Computer Science, pages
5–18. Springer, November 2003.

79. E. Kamsties, K. Pohl, and A. Reuys. Supporting test case derivation in do-
main engineering. In 7th World Conference on Integrated Design and Process
Technology (IDPT-2003), December 2003.

80. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon University, November
1990.

81. J. Kontio. The riskit method for software risk management, version 1.00.
Technical Report CS-TR-3782, University of Maryland, 1997.

82. P. Kotler and F. Bliemel. Marketing Management. Schäffer-Poeschel, 2001.
83. B. Kristensen. Object-oriented modeling with roles. In Proceedings of the 2nd

International Conference on Object-Oriented Information Systems, OOIS’95,
1995.

84. D. Lea. Draft java coding standard. http://gee.cs.oswego.edu/dl/html/java
CodingStd.html.

85. J. Lee and K. Kang. A feature-oriented approach to developing dynamically
reconfigurable products in product line engineering. In Proceedings of the 10th
International Software Product Line Conference (SPLC 2006), pages 131–140,
2006.

86. W. Lim. Reuse economics: A comparison of seventeen models and directions
for future research. In Proceedings of the Fourth International Conference on
Software Reuse, pages 41–50, 1996.

87. T. Lister. Point: Risk management is project management for adults. IEEE
Software, 14(3):20–22, 1997.

88. R. Macala, L. Stuckey, and D. Gross. Managing domain-specific, product-line
development. IEEE Software, 13(3):57–67, 1996.

89. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed soft-
ware architectures. In Wilhelm Schäfer and Pere Botella, editors, Proceedings
of the European Software Engineering Conference (ESEC’95), volume 989 of
Lecture Notes in Computer Science, pages 137–153. Springer, 1995.

90. C. Mason and G. Milne. An approach for identifying cannibalization within
product line extensions and multi-brand strategies. Journal of Business Re-
search, 31:163–170, 1994.

322 References

91. M. Matinlassi. Comparison of software product line architecture design meth-
ods: COPA, FAST, FORM, KobrA and QADA. In ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering, pages 127–136,
Washington, DC, USA, 2004. IEEE Computer Society.

92. J. McGregor. Testing a software product line. Technical Report
CMU/SEI- 2001-TR-022, Software Engineering Institute, Carnegie Mellon Uni-
versity, 2001. http://www.sei.cmu.edu/publications/documents/01.reports/
01tr022.html.

93. J. McGregor and D. Sykes. A Practical Guide to Testing Object-Oriented
Software. Addison–Wesley, 2001.

94. W. Mellis. Process and product orientation in software development and their
effect on software quality management. In M. Wieczorek and D. Meyerhoff,
editors, Software Quality — State of the Art in Management, Testing, and
Tools. Springer, 2000.

95. Microsoft .NET technology. http://msdn.microsoft.com/netframework.
96. D. Muthig. A Light-Weight Approach Facilitating an Evolutionary Transition

Towards Software Product Lines. PhD thesis, University of Kaiserslautern,
IRB Verlag, 2002.

97. J. Neighbors. The draco approach to constructing software from reusable com-
ponents. IEEE Transactions on Software Engineering, 10(5):564–573, Septem-
ber 1984.

98. E. Niemela. Strategies of product family architecture development. In Proceed-
ings of the Ninth International Conference on Software Product Lines (SPLC
2005), pages 186–197, 2005.

99. H. Obbink, J. Müller, P. America, and R. van Ommering. COPA — a
component-oriented platform architecting method for families of software-
intensive electronic products. Available at: http://www.extra.research.
philips.com/SAE/COPA/COPA Tutorial.pdf, 2000. Presented as Tutorial at
SPLC’01.

100. Object Management Group (OMG). Model driven architecture. http://
www.omg.org/mda/.

101. D. Parnas. On the design and development of program families. IEEE Trans-
actions on Software Engineering, 2(1):1–9, March 1976.

102. J. Peltonen. Visual scripting for UML-based tools. In Proceedings of the In-
ternational Conference on Software and Systems Engineering and their Appli-
cations(ICSSEA 2000), volume 3, 2001.

103. Royal philips. http://www.philips.com/.
104. Product line hall of fame. Available on the Internet at: http://www.

sei.cmu.edu/plp/plp hof.html.
105. K. Pohl. Process-Centered Requirements Engineering. John Wiley & Sons,

1996.
106. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, 2005.
107. M. Porter. Wettbewerbsstrategie. Campus, 1999.
108. J. Poulin. Measuring Software Reuse — Principles, Practices, and Economic

Models. Addison-Wesley, 1997.
109. Project Management Institute, Four Campus Boulevard, Newtown Square, PA

19073-3299. A Guide to the Project Management Body of Knowledge (PM-
BOK) GUIDE, 2000.

References 323

110. Product pure::variants. http://www.pure-systems.com/Variant Management.
49.0.html, September 2006.

111. M. Raatikainen, T. Soinine, T. Männistö, and A. Mattila. A case study of
two configurable software product families. In Proceedings of Product Family
Engineering, 5th International Workshop, PFE 2003, pages 403–421, 2003.

112. A. Reuys, E. Kamsties, K. Pohl, H. Goetz, J. Neumann, and J. Weingaert-
ner. Testen von Software-Produktvarianten — Ein Erfahrungsbericht. In Pro-
ceedings der Teilkonferenz zu Software-Produktlinien im Rahmen der Multi-
Konferenz Wirtschaftsinformatik (MKWI 2004), March 2004.

113. A. Reuys, S. Reis, E. Kamsties, and K. Pohl. Derivation of domain test scenar-
ios from activity diagrams. In Proceedings of the International Workshop on
Product Line Engineering The Early Steps: Planning, Modeling, and Managing
(PLEES’03), September 2003.

114. A. Reuys, S. Reis, E. Kamsties, and K. Pohl. The ScenTED Method for Testing
Software Product Lines, chapter 13, pages 479–518. Springer, 2006.

115. C. Riva, P. Selonen, T. Systä, A.-P. Tuovinen, J. Xu, and Y. Yang. Establishing
a software architecting environment. In Proceedings of the Working IFIP/IEEE
Conference on Software Architecture (WICSA 2004, 2004.

116. C. Riva, P. Selonen, T. Systä, and J. Xu. UML-based reverse engineering
and model analysis approaches for software architecture maintenance. In Pro-
ceedings of the International Conference on System Maintenance (ICSM’04),
2004.

117. S. Sanderson and M. Uzumeri. The Innovation Imperative — Strategies for
Managing Product Models and Families. Irwin Professional Publishing, 1997.

118. K. Schmid. The product line mapping method. Technical Report 028.00/E,
Fraunhofer IESE, 2000.

119. K. Schmid. Scoping software product lines — an analysis of an emerging tech-
nology. In Patrick Donohoe, editor, Software Product Lines: Experience and
Research Directions; Proceedings of the First Software Product Line Conference
(SPLC1), pages 513–532. Kluwer Academic Publishers, 2000.

120. K. Schmid. An assessment approach to analyzing benefits and risks of prod-
uct lines. In The Twenty-Fifth Annual International Computer Software and
Applications Conference (Compsac’01), pages 525–530, 2001.

121. K. Schmid. An initial model of product line economics. In F. van der Linden,
editor, Proceedings of the Fourth International Workshop on Product Family
Engineering (PFE-4), 2001, volume 2290 of Lecture Notes in Computer Sci-
ence, pages 38–50. Springer, 2001.

122. K. Schmid. A comprehensive product line scoping approach and its validation.
In Proceedings of the 24th International Conference on Software Engineering,
pages 593–603, 2002.

123. K. Schmid. Planning Software Reuse — A Disciplined Scoping Approach for
Software Product Lines. PhD thesis, University of Kaiserslautern, IRB Verlag,
2002.

124. K. Schmid. People management in institutionalizing product lines. Technical
Report 102.03/E, Fraunhofer Institute for Experimental Software Engineering
(IESE), 2003.

125. K. Schmid. A quantitative model of the value of architecture in product line
adoption. In Proceedings in the 5th International Workshop on Product Family
Engineering (PFE’5), 2003.

324 References

126. K. Schmid, U. Becker-Kornstaedt, P. Knauber, and F. Bernauer. Introducing
a software modeling concept in a medium-sized company. In Proceedings of the
22nd International Conference on Software Engineering, pages 558–567, 2000.

127. K. Schmid and C. Gacek. Implementation issues in product line scoping. In
William B. Frakes, editor, Software Reuse: Advances in Software Reusability
— Proceedings of the 6th International Conference, ICSR’6, Vienna, Austria,
June 2000, number 1844 in Lecture Notes in Computer Science, pages 170–189.
Springer, 2000.

128. K. Schmid and I. John. A customizable approach to full lifecycle variability
management. Science of computer programming, 53(3):259–284, 2004.

129. K. Schmid, I. John, R. Kolb, and G. Meier. Introducing the PuLSE approach
to an embedded system population at Testo AG. In Proceedings of the 27th

International Conference on Software Engineering(ICSE’27), pages 544–552,
2005.

130. K. Schmid, K. Krennrich, and M. Eisenbarth. Requirements management for
product lines: Extending professional tools. In Proceedings of the 10th Interna-
tional Software Product Line Conference (SPLC 2006), pages 113–122, 2006.

131. K. Schmid and M. Verlage. The economic impact of product line adoption and
evolution. IEEE Software, 19(6):50–57, July/August 2002.

132. Staged event-driven architecture. http://www.eecs.harvard.edu/ mdw/proj/
seda/.

133. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

134. Software Productivity Consortium Services Corporation. Reuse Adoption
Guidebook, Version 02.00.05, November 1993.

135. Software Productivity Consortium Services Corporation, Technical Report
SPC-92019-CMC. Reuse-Driven Software Processes Guidebook, Version
02.00.03, November 1993.

136. M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and S. Ferber.
Introducing PLA at Bosch Gasoline Systems: Experiences and practices. In
Proceedings of the Software Product Line Conference, SPLC’04, pages 34–50,
2004.

137. M. Svahnberg and J. Bosch. Evolution in software product lines: Two cases.
Journal of Software Maintenance: Research and Practice, 11:399–422, 1999.

138. L. Taborda. Generalized release planning for product line architectures. In
R. Nord, editor, Software Product Lines, Third International Conference, vol-
ume 3154 of Lecture Notes in Computer Science, pages 238–254. Springer,
2004.

139. CMMI Product Team. Capability maturity model integration (CMMI), ver-
sion 1.1 - CMMI for systems engineering and software engineering (CMMI-
SE/SW, v1.1) -staged representation. Technical Report CMU/SEI-2002-
TR-002, Software Engineering Institute, Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview05.pdf.

140. CMMI Product Team. Capability maturity model integration (CMMI)
overview. Technical report, Software Engineering Institute, Carnegie Mel-
lon University, 2005. http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-
overview05.pdf.

141. P. Toft, D. Coleman, and J. Ohta. A cooperative model for cross-divisional
product development for a software product line. In P. Donohoe, editor, Soft-
ware Product Lines: Experience and Research Directions; Proceedings of the

References 325

First Software Product Line Conference (SPLC1), pages 111–132. Kluwer Aca-
demic Publishers, 2000.

142. J.-P. Tolvanen and S. Kelly. Defining domain-specific modelling languages
to automate product derviation: Collected experiences. In Proceedings of the
Ninth International Conference on Software Product Lines (SPLC 2005), pages
198–209, 2005.

143. F. van der Linden. Engineering software architectures, processes and platforms
for software product families. In Software Product Lines – Proceedings of the
Second International Conference, SPLC 2, volume 2379 of Lecture Notes in
Computer Science, pages 383–397. Springer, August 2002.

144. F. van der Linden. Software product families in europe: The ESAPS and CAFÉ
projects. IEEE Software, 19(4):41–49, July/August 2002.

145. F. van der Linden, J. Bosch, E. Kamsties, K. Kansala, L. Krzanik, and H. Ob-
bink. Software product family evaluation. In Proceedings of Product Family
Engineering, 5th International Workshop, PFE 2003, pages 352–369, 2003.

146. F. van der Linden and J. Müller. Creating architectures with building blocks.
IEEE Software, 12(6):51–60, 1995.

147. F. van der Linden and J. Wijnstra. Platform engineering for the medical
domain. In Proceedings of the fourth Workshop on Product Family Engineering
(PFE-4), volume 2290 of Lecture Notes in Computer Science, pages 224–237.
Springer, 2001.

148. R. van Ommering. Building Product Populations with Software Components.
PhD thesis, Rijksuniversiteits Groningen, 2004.

149. R. van Ommering. Software reuse in product populations. IEEE Transactions
on Software Engineering, 31(7):537–550, July 2005.

150. Velocity website. http://jakarta.apache.org/velocity/.
151. B. Weichel. A backbone in automotive software development based on XML

and ASAM/MSR. In 2004 SAE World Congress, 2004.
152. M. Weiser. The computer of the 21st century. Scientific American, 265(3):

94–104, 1991.
153. D. Weiss. Product-line engineering as the basis for reuse. In The 8th Interna-

tional Conference on Software Reuse, 2004. keynote speech.
154. J. Wijnstra. Critical factors for a successful platform-based product software

product family approach. In Software Product Lines – Proceedings of the Sec-
ond International Conference, SPLC 2, pages 68–89, 2002.

155. J. Withey. Investment analysis of software assets for product lines. Technical
Report CMU/SEI-96-TR-010, Software Engineering Institute, Carnegie Mellon
University, 1996.

156. B. Witt, F. Baker, and E. Merritt. Software Architecture and Design: Prin-
ciples, Models, and Methods. J. Wiley & Sons, Inc., New York, NY, USA,
1993.

157. W. Zhang and S. Jarzabek. Reuse without compromising performance: In-
dustrial experience from RPG software product line for mobile devices. In
Proceedings of the Ninth International Conference on Software Product Lines
(SPLC 2005), pages 45–56, 2005.

About the Authors

Frank van der Linden has worked at Philips Medical Systems in the Nether-
lands since 1999 and has been involved with software product lines since then.
He was programme chair of a series of five workshops on product line engi-
neering, is a member of the steering committee of the SPLC conferences, and
has co-authored Software Product Line Engineering published by Springer in
2005.

Klaus Schmid is Professor for software engineering at the University of
Hildesheim, Germany. Previously, he was department head for requirements

328 About the Authors

engineering and usability engineering at the Fraunhofer Institute for Exper-
imental Software Engineering (IESE) in Kaiserslautern, Germany. He has
been involved in numerous research and industrial projects in product line
engineering.

Eelco Rommes worked at Philips Research in the area of software architec-
ture for medical systems from 2001 to 2006. During that time he was involved
in several research projects and he has published on software product lines
and related topics.

Index

ad hoc reuse, 5
adaptation, 40

adoption, 289
alternative, 11

application design, 16, 54

application engineering, 7, 14, 18,
53, 283

design, 16, 54
realisation, 16, 54

requirements, 16, 53

roles, 60
testing, 16, 54

unit, 67
application realisation, 16, 54

application requirements engineering,
16, 53

application testing, 16, 54

architecting, 40
architectural style, 173

architecturally significant
requirements, 38

architecture, 18, 37
client-server, 126

conceptual, 39

concerns, 38
description language, 227

end of life, 44
enforcement, 128

erosion, 44

evaluation, 42, 181, 204
evolution, 43

layered, 126
measures, 181

product line, 37
refactoring, 44
reference architecture, see reference

architecture
requirements, 38
scoping the, 34
structure, 39
texture, 39
view, 253
viewpoint, 193

architecture dimension, 81, 85
aspects, 86

architecture-centric, 8, 14, 19
development, 3

ARES, 6
asset, 4–6

management, 72, 208, 211, 214
scoping, 13
team, 229

BAPO, 16, 17, 20, 80, 230
case study, 116
dimensions, 81

binding time, 310
broadcasting, 127
business

model, 239
owner, 62
strategy, 290

business dimension, 81, 82
aspects, 82

business goal, 140
business strategy, 21, 141

330 Index

business-centric, 8, 19
development, 3

CAFÉ, 6, 113, 115
Capability Maturity Model Integrated,

see CMMI
case study, 112, 115

format, 116
multi-project variation, 113

change control, 244
change management, 183, 185
change request, 135
CMMI, 55, 308
cooperation, 246, see collaboration
code generation, 42
collaboration

mechanisms, 77
roles, 60
schemes, 77

commodity, 25
commonality, 8, 18, 163
communication patterns, 66, 77
compile-time configuration, 42
complex organisations, 97
complexity management, 163, 278
component, 39

Koala, 224
replacement, 42

conceptual architecture, 39
configuration, 42

compile-time, 42
management, 231, 244

cost
of quality, 17

cost leadership strategy, 26
cost of quality, 175
costs

development, 4, 27
cross-functional team, 61

data warehouse, 213, 215
defect density, 17
design

application engineering, 16, 54
domain engineering, 15, 51

development
costs, 4, 27
distributed, 229
for reuse, 6

multi-site, 229
risk, 28
time, 28
with reuse, 6, 7

distributed development, 229
documentation

software, 227
domain design, 15, 51
domain engineering, 6, 14, 18, 49, 283

design, 15, 51
product management, 15, 31, 49,

74, 280
realisation, 15, 51
requirements, 15, 49
roles, 60
testing, 15, 52
unit, 67

domain potential analysis, 13
domain realisation, 15, 51
domain requirements engineering,

15, 49
domain testing, 15, 52
domain-specific languages, 309

economic models, 307
efficiency, 279
erosion, 44
ESAPS, 6, 113, 115
evaluation

architecture, 42, 181, 204
organisation, 298
profile, 81

evolution, 43, 240
intentional, 43
organisational, 209
product line, 302
uninentional, 43

experimentation, 112
extension, 40, 126

FAMILIES, 6, 113, 115
Family Evaluation Framework, see FEF
features, 196
FEF, 79, 115, 298

profile, 97
financing, 164, see funding
framework, 125–127

design, 130

Index 331

for software product line
engineering, 48

Framework for Software Product Line
Practice, 104, 299

funding, 68, see financing

goals, 295

inheritance, 41
Inner Source, 41, 228, 247, 248, 284
institutionalisation, 300
intentional evolution, 43
issue resolution, 187

Koala
architecture description language, 227
component model, 224

layered architecture, 126
legacy, 173, 279
life-cycle, see two-life-cycle approach

application engineering, 53
domain engineering, 49
market, 24
product line, 24

maintainability, 28
maintenance costs, 4
make/buy/mine/commission, 51
management

involvement, 285
support, 164, 280

market
entry, 21
life-cycle, 24
segment, 23
strategy, 21–24
time to, 4, 17

mass-customisation, 22
matrix organisation, 70, 209
multi-site development, 229

organisation, 59, 184, 309
asset management, 72
asset team, 229
complex, 97
evaluation, 298
evolution, 209
matrix, 70, 209, 260
multi-site, 229

process-oriented, 69
product-oriented, 67
role, 184, 260
secondary structure, 69
structure, 60, 66
testing, 70

organisation dimension, 81, 93
aspects, 94

patching, 41, 131
platform, 150, 164, 247, 279
PLTP, 299
plug-in, 42, 126–128

framework, 126
portability, 28
Praise, 6
process dimension, 81, 88

aspects, 89
process improvement, 146
process quality, 4, 5
process-oriented organisation, 69
product complexity, 135
product configurations, 176
product definition strategy, 22–23

customer-driven, 22
market-oriented, 22
producer-driven, 22
technology-oriented, 22

product line
architecting, 40
architecture, 14, 37, 126
business, 35
cannibalisation, 26, 32
economics, 27–29
evolution, 302
hierarchical, 235
life-cycle, 22, 24–26, 212
marketed, 246
planning, 61
roles, 61
strategic definition, 136

product line adoption, 251
product line engineering

adoption, 172
responsibilities, 61
roles, 61
shortcomings, 306

Product Line Technical Probe, 105, 299
product management, 15, 31, 49, 74, 280

332 Index

product portfolio
management, 31
planning, 13
scoping, see scoping, product

portfolio
product quality, 27
product-specific, 8
project management, 243
project risk, 4

quality, 279
aspect, 199
assurance, 5
cost of, 17, 175
impact of product line engineering

on, 27

realisation
application engineering, 16, 54
domain engineering, 15, 51

refactoring, 44, 182
reference architecture, 18, 19, 37, 136,

140, 185, 281
release strategy, 126, 131
reliability, 28
replacement, 40
requirements, 131, 196, 243

application engineering, 16, 53
architecturally significant, 38
domain engineering, 15, 49
engineering, 228

responsibilities, 61
return on investment, 28, 34
reuse, 164, 246, 279

ad hoc, 5
risk analysis, 291
roadmapping, 302
ROI, see return on investment
role, 61

application engineering, 60
collaboration, 60
domain engineering, 60
product line, 61

rolling out, 300

scoping, 12, 31, 296
asset, 31, 34
domain, 31
product portfolio, 31, 33, 180

security, 199
software documentation, 227
software product line, see product line
software product line engineering, see

product line engineering
software product line engineering

framework, 48
start-up overhead, 252
strategy, 290
structure

architecture, 39
organisation, 60, 66

success factors, 113
supplier management, 243
support

gaining support, 294

team
asset, 229
cross-functional, 61

test, 260
test case, 256
testing, 183, 228

application engineering, 16, 54
domain engineering, 15, 52
organisation, 70

texture, 39
time to market, 4, 17
tool support, 197, 287, 309

lack of, 143
traceability, 195, 213
transitioning, 289
two-life-cycle approach, 3, 8, 14, 18,

20, 48

uninentional evolution, 43
usability, 28

variability, 6, 8, 18, 163
binding time, 12
commonality, 8
constraint, 11
dependency, 11
excludes, 11
implementation, 176
in test case, 255
in the reference architecture, 40–42
instantiation, 11
management, 3, 7, 8, 19, 278, 282, 308

Index 333

mechanisms, 41
code generation, 42
compile-time configuration, 42
component replacement, 42
configuration, 42
inheritance, 41
patching, 41
plug-in, 42

product-specific, 8
requires, 11
techniques, 40

adaptation, 40
extension, 40
replacement, 40

traceability, 308
types of, 8

variant, 11
variation

customer-specific, 135
point, 10

vision, 164, 285, 290
vision statement, 290

	978-3-540-71437-8_BookFrontMatter_OnlinePDF.pdf
	Foreword
	Preface
	Contents

	978-3-540-71437-8_1_Part_OnlinePDF.pdf
	978-3-540-71437-8_1_OnlinePDF.pdf
	The Product Line Engineering Approach

	978-3-540-71437-8_2_OnlinePDF.pdf
	Business

	978-3-540-71437-8_3_OnlinePDF.pdf
	Architecture

	978-3-540-71437-8_4_OnlinePDF.pdf
	Process

	978-3-540-71437-8_5_OnlinePDF.pdf
	Organisation

	978-3-540-71437-8_6_OnlinePDF.pdf
	The Family Evaluation Framework

	978-3-540-71437-8_2_Part_OnlinePDF.pdf
	978-3-540-71437-8_7_OnlinePDF.pdf
	Experiences in Product Line Engineering

	978-3-540-71437-8_8_OnlinePDF.pdf
	AKVAsmart

	978-3-540-71437-8_9_OnlinePDF.pdf
	Bosch Gasoline Systems

	978-3-540-71437-8_10_OnlinePDF.pdf
	DNV Software

	978-3-540-71437-8_11_OnlinePDF.pdf
	market maker Software AG

	978-3-540-71437-8_12_OnlinePDF.pdf
	Nokia Mobile Phones

	978-3-540-71437-8_13_OnlinePDF.pdf
	Nokia Networks

	978-3-540-71437-8_14_OnlinPDF.pdf
	Philips Consumer Electronics Softwarefor Televisions

	978-3-540-71437-8_15_OnlinePDF.pdf
	Philips Medical Systems

	978-3-540-71437-8_16_OnlinePDF.pdf
	Siemens Medical Solutions

	978-3-540-71437-8_17_OnlinePDF.pdf
	Telvent

	978-3-540-71437-8_3_Part_OnlinePDF.pdf
	978-3-540-71437-8_18_OnlinePDF.pdf
	Analysis

	978-3-540-71437-8_19_OnlinePDF.pdf
	Starting with Software ProductLine Engineering

	978-3-540-71437-8_20_OnlinePDF.pdf
	Outlook

	978-3-540-71437-8_BookBackmatter_OnlinePDF.pdf
	Glossary
	References
	About the Authors
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

